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Abstract

Given trajectories or location traces and user-specified thresholds,
we investigate algorithms to detect recurring co-traveling patterns.
For example, a school bus transports students between a neigh-
borhood and a school. The problem is important for its societal
applications in anomaly detection, synthetic trajectory and location
trace data evaluation, and transportation planning. For example,
deviations from recurring co-traveling groups naturally highlight
anomalies, such as unexpected disruptions in commuting flows or
rare co-traveling events. The problem is challenging due to the need
to model recurring co-traveling routes and process an exponen-
tially large number of candidate groups. Existing spatiotemporal
data mining methods primarily focus on detecting co-occurrence
relationships, but do not identify recurring co-traveling routes with
specific travel areas. To overcome these limitations, we propose a
novel recurring co-traveling group interest measure and Recurring
Co-traveling Pattern Detection (RCPD) algorithms. We employ a
divide-and-conquer method and spatial indices to improve computa-
tion efficiency. We also provide theoretical proofs that the proposed
interest measure has the anti-monotone property, allowing early
pruning, and the proposed algorithm is correct and complete. We
evaluate our methods using real and synthetic trajectory/location
trace data, as well as a case study on anomaly detection.
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1 Introduction

Given trajectory or location trace! data and user-specified thresh-
olds, the recurring co-traveling pattern detection problem aims to
find groups of agents who travel from one area to another during
the same time windows and identify their recurring co-traveling
routes. Each recurring co-traveling group co-travels in at least a
threshold number of time windows, and the co-located area is small
enough to be geographically meaningful. For example, a co-location
in a city is less interesting than one in a business area. The recurring
co-traveling agents do not necessarily know each other or travel
simultaneously to the exact location. For example, college students
travel by campus bus to various parts of the campus. Additionally,
"recurring” means that the co-traveling occurs repeatedly, but not
necessarily at fixed intervals. Figure 1 shows an example input of
location traces (Figure 1a) and the corresponding output of Recur-
ring Co-traveling Groups (RCGs) (Figure 1b). The agents’ locations
in Figure 1a are grouped by three time windows (Mondays 9-11
am, Mondays 1-3 pm, and Mondays 7-9 pm). For each time window,
we find each agent’s most-visited place (MVP) and group agents
based on whether their MVPs are close to each other in an area. If
we require an RCG to co-travel in at least two time windows, then
agents Blue, Red, and Green in Figure 1b form an RCG that travels
between (Mondays 9-11 am, Areal) and (Mondays 7-9 pm, Area3).
If Areal is a business area and Area3 is a residential area, this group
could be a work-home recurring co-traveling group on Mondays.
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Figure 1: Example input and output of RCG detection

Detecting recurring co-traveling patterns has important societal
applications, including but not limited to: 1) Anomaly detection.

'In this paper, a location trace is a sequence of logged raw location points with
timestamps, such as logged GPS locations from cell phones. Data points of location
traces are discrete and often sparse. A trajectory, by contrast, is a continuous/smooth
movement path, which may contain other information like speed.
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Recurring co-traveling patterns can serve as baseline normal expec-
tations. By contrast, rare co-traveling groups may signal anomalies
worth investigating, such as those that suddenly emerge, disappear,
or change, co-traveling groups with irregular sizes or routes, or
groups having unusual co-traveling frequencies/gatherings. Fur-
thermore, the proposed algorithms can serve as baseline models
of normal mobility, against which anomalies can be detected. Sec-
tion 5.4 gives a detailed case study; 2) Synthetic trajectory/location
trace data evaluation. RCG patterns can serve as evaluation met-
rics for synthetic trajectory/location trace data regarding trajec-
tory/location trace interactions and agents’ patterns of life, which
are important properties for synthetic trajectory/location trace data
in anomaly detection, privacy research, and location-based services
[1, 2, 22]; 3) Transportation planning. RCG patterns can support
efficient investment in transportation networks, such as directing
funds into areas with high travel demands and designing public
transit systems based on recurring co-traveling patterns.
Detecting RCGs has several challenges. First, modeling recurring
co-traveling routes requires specifying small enough co-location
areas, such as a neighborhood or a block, and short time windows,
such as an hour, to be useful for societal applications. Also, an RCG
can break into multiple subgroups following different recurring
co-traveling routes, or different RCGs can merge into the same
recurring co-traveling route in some time window. A second chal-
lenge is computation complexity. Trajectory/location trace data is
usually massive due to its spatiotemporal nature. Also, we need to
generate and process an exponentially large number of candidate
groups, which results from multiple grouping dimensions, includ-
ing agents, locations, and time windows. For example, detecting
a seven-agent RCG that co-travels in every time window requires
generating and processing 127 sub-group candidates (see Appendix
A for details). Lastly, grouping agents based on their MVPs and time
windows requires an extra spatial clustering step, such as running
DBSCAN on every agent’s visited locations in each time window.
Recurring Co-traveling Routes
Ye: [+]
Proposed Algorithms [3,6,7,8,12, 16, 19, 29]
Figure 2: Comparison of Related Work

Most of the literature on spatiotemporal data mining has focused
on detecting co-occurrence relationships, but it does not identify
recurring co-traveling routes with specific travel areas, which are
crucial for anomaly detection. Figure 2 shows a comparison with re-
lated work. The most similar methods we are aware of are MDCOP
and MDCOPfast [8]. MDCOP algorithms divide spatiotemporal
data into time windows and detect co-location patterns using the
participation index in each time window. As the participation index
is based on the neighbor relationships between instances in the
study area as a whole, it only identifies co-location relationships
but not specific common origins, destinations, or schedules. In addi-
tion, MDCOP/MDCOPfast does not require a minimum number of
participating instances (which are recurring visits to a place in our
problem). Thus, MDCOP/MDCOPfast is not capable of detecting
recurring co-traveling routes. Other spatiotemporal co-occurrence
mining methods [3, 6, 7, 12, 16, 19, 29] have the same limitations in
identifying recurring co-traveling routes.
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To overcome these limitations, we propose a novel recurring co-
traveling group interest measure to model recurring co-traveling
routes. We show that the interest measure has an anti-monotone
property, allowing early pruning. We propose a Recurring Co-
traveling Pattern Detection (RCPD) algorithm to correctly and
completely detect recurring co-traveling groups. The algorithm
divides timestamps into time windows. For each agent in each
time window, the algorithm identifies the agent’s MVP. Then, it
detects agents’ co-locations based on MVPs and detects recurring
co-traveling routes based on the co-locations across time windows.
Additionally, we employ a divide-and-conquer method and spatial
indices to improve computation efficiency and propose a Recurring
Co-traveling Pattern Detection Advanced (RCPD-Adv) algorithm.

We are also aware of the sensitive nature of trajectory/location
trace data and incorporate additional privacy features into the pro-
posed methods. We employ differential privacy [11] to add noise to
input trajectories/location traces in both locations and timestamps.
We utilize k-anonymity [23] on the output to require that a recur-
ring co-traveling group contains at least K agents. Additionally,
if the co-located area is too small, such as a building, it will be
spatially cloaked by a larger area for privacy. Lastly, the algorithms
provide options to convert latitude/longitude into relative (x, y)
coordinates with a randomly picked reference point and de-identify
agent and group IDs. Grouping agents’ noise-added spatiotemporal
data by time window (e.g., Saturday mornings) and region (e.g.,
a business area), and requiring a minimum number of agents in
a group, increases the difficulty in identifying individual trajecto-
ries/location traces from the recurring co-traveling groups. Due to
the privacy-utility tradeoff [15], these privacy features are optional,
and users can decide on the level of privacy protection they require.

This paper makes the following contributions:

e We formalize the problem of recurring co-traveling pattern
detection.

e We introduce a novel recurring co-traveling group interest
measure and show its anti-monotone property.

e We propose a Recurring Co-traveling Pattern Detection (RCPD)
algorithm and an advanced RCPD algorithm (RCPD-Adv)
that uses a divide-and-conquer approach and spatial indices
to reduce the candidate space.

e We prove the correctness and completeness of the proposed
methods and evaluate them through experiments on real
and synthetic data and an anomaly detection case study.

Scope: The algorithm outputs groups with recurring co-traveling
routes containing time windows and co-located areas defined by
minimum bounding rectangles. Interpretation of recurring co-traveling
routes based on location types is not considered. We define user-
specified thresholds and explore their effects on the output. We
leave the choice of threshold values to domain experts and ap-
plications. This paper uses existing privacy protection methods,
including k-anonymity and differential privacy, in the algorithm to
protect individual privacy. Advancing privacy protection methods
falls outside the scope of this paper. We do not have permission
from the vendor (Veraset) to share the real data, but the synthetic
data is provided.
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2 Basic Concepts and Problem Formulation

In this section, we define basic concepts, formulate the interest
measure, and present the formal problem statement.

2.1 Basic Concepts

We use the following basic concepts in our recurring co-traveling
pattern detection formulation: 1) A visited location of an agent
is a (x, y) point where the agent visits at a particular time. For
example, the colored dots in Figure 1a are visited locations of those
agents at the specific times on the timeline; 2) A threshold-largest-
cluster-points (Typ) is the minimum number of visited locations
the largest visited-location cluster needs to have to be kept after
DBSCAN. This threshold ensures recurring visits of a place; 3) A
threshold-area-upper (T4y) is the threshold minimum bounding
rectangle (MBR) area that decides whether an MBR is small enough
to be geographically meaningful and specific; 4) A threshold-area-
lower (T4y) is the threshold MBR area that decides whether an
MBR needs to be spatially cloaked for privacy. If an MBR is smaller
than Tar, we cover it with another MBR of random size in [Tar,
Tau]. This threshold prevents an exact location from being inferred
if agents are co-located in a tiny area, such as a building; 5) A time
window (TW) is a partition of time within which an agent’s visited
locations are grouped, such as Mondays between 9 am and 11 am in
Figure 1b; 6) A most-visited place (MVP) is the MBR of the largest
cluster of an agent’s visited locations in a time window. An MVP
contains greater than or equal to Trp visited locations, ensuring that
the place is recurringly visited, and by extension, the co-traveling
route is recurringly traveled. An MVP also needs to have an area
in [Tar, Tau]. For example, the blue MBR in the first time window
in Figure 1b is the MVP of agent Blue on Mondays between 9 am
and 11 am. We only consider the MVP in a time window to find
the most frequent patterns; 7) A threshold-distance (Tp) is the
distance between two MVPs, deciding whether they co-locate; 8)
A threshold-count-time-window (T¢T) is the minimum number
of time windows during which a group must co-travel repeatedly
to be a recurring co-traveling group; 9) A gridded study area is a
study area that is divided into grids of the same size. The number of
grids is decided by the user-specified grid length and width and the
data inferred study area. Figure 4a shows an example of a gridded
study area; 10) Buffered grids are grids of a gridded study area to
which x and y buffers have been added. The buffer sizes in meters
of x and y coordinates are determined by Tp and the study area’s x
and y. Examples of buffered grids are shown in Figure 4b; 11) K is
the minimum number of agents in a recurring co-traveling group
to satisfy k-anonymity; 12) Differential privacy parameters: €
is the privacy loss parameter. A smaller € means stronger privacy
and more noise being added. Sens is the spatial sensitivity deciding
how far a location can be moved in meters. Sent is the temporal
sensitivity deciding how many seconds a timestamp can be changed.

2.2 Interest Measure

Definition 1 Group co-located area (GCA): Given a time win-
dow t (TW;) and a group (Gi) of agents, a GCA in TW; is an MBR
of agents’ most-visited places (MVPs) in TW; where distances be-
tween agents’ MVPs are less than or equal to Tp, and the area of the
MBR is less than or equal to Tay, i.e., (Distance(GCAgi, TWt) <=
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Tp, Area(GCAgi, TWt) <= Tay), where Distance(GCAgi, TWt) =
max(distance(MV Py, MV Pya, b € Gi)). For example, Areal in Fig-
ure 1b is a GCA of agents Blue, Red, Green, and Yellow.
Definition 2 Group recurring co-traveling route: A group re-
curring co-traveling route is represented as {(TW, GCA{|TW; €
time windows)}. For example, the group recurring co-traveling
route of agents Blue, Green, and Red in Figure 1b is {(Mondays
9-11am, Areal), (Mondays 7-9pm, Area3)}.

Definition 3 Recurring co-traveling group (RCG): Given thresh-
olds K, Tp, TaL, Tau, and Tcr, a group of agents (Gi) is an RCG if
the group’s cardinality is greater than or equal to K, each GCA is
within the range [Tar, Tau] and the length of the group recurring
co-traveling route is greater than or equal to Tcr, i.e.,

Distance(GCAg;, TW:) < Tp,
Area(GCAG;, TW;) € [TaL, Taul, |2 Ter
Cardinality(Gi) > K

Count(t € T)

For example, in Figure 1b, if K=3, Tp = 10m, Tar, = 10% of the study
area, Toy = 25% of the study area, and TcT = 2, then agents Blue,
Green, and Red form a recurring co-traveling group of three agents
and two recurring co-traveling time windows.

Definition 4 Maximal RCG: A maximal RCG is an RCG that is not
contained in any larger RCGs. An RCG A is contained in another
RCG B when the agents of A are a subset of agents of B, and for
each recurring co-traveling time window, agents of A co-locate in
a sub-area of B’s GCA.

2.3 Formal Problem Statement

Given trajectory/location trace data and user-specified thresholds,
the recurring co-traveling pattern detection problem aims to cor-
rectly, completely, and efficiently detect groups of agents who re-
curringly travel from one area to another in the same time windows.
Differential privacy and k-anonymity are incorporated for privacy
considerations.
Inputs: 1) Trajectories/location traces: (id, latitude, longitude, times-
tamp); 2) A list of interested time windows (TW); 3) User-specified
thresholds: Tp, Tau, TaL, Tet, Trp, K, €, Seng, Senr.
Output: Anonymized co-travelling groups which meet Definition 3:
{groupID, cardinality, recurring co-traveling route: ((TW1, Areal],
[TW2, Area2], ...)}.
Objectives: Computational efficiency.
Constraints: Completeness, Correctness, Privacy consideration.
Example: Suppose that we set K = 3, Tp = 10m, Tay, = 10% of the
study area, Toy = 25% of the study area, TcT = 2, and Ty p = 3, then
agents Blue, Green, and Red in Figure 1b form an RCG. This group
recurringly co-travels from (Mondays 9-11 am, Areal) to (Mondays
7-9 pm, Area3). In each recurring co-traveling time window, the
group’s GCA is between 10% and 25% of the study area. Each agent’s
MVP has three or more visited locations. The pairwise distance
between any two agents’ MVPs is less than or equal to Tp.
Unlike traditional anomaly detection methods that focus on
individual anomalies [10, 17], this problem identifies normal co-
traveling groups and allows the definition of new group anomalies
as deviations. Users can control thresholds to distinguish between
normal and abnormal recurring co-traveling groups. For example,
groups co-traveling in an abnormally high number of time windows
(TcT) or abnormally high density of appearance in a location (Trp)



GeoAnomalies "25, November 3-6, 2025, Minneapolis, MN, USA

would be signs of anomalies. Also, unusual time windows and
locations of recurring co-traveling routes from the output are other
signals of geo-anomalies.

3 Proposed Approach

In this section, we describe our two novel algorithms for detecting
recurring co-traveling patterns, RCPD and RCPD-Adv. We also give
execution traces of these algorithms. A detailed introduction of
helper functions can be found in Appendix B.

3.1 RCPD

There are five steps to detect recurring co-traveling groups from
trajectory/ location trace data: 1) Process raw trajectories/location
traces and detect recurring one-agent groups (RCGy); 2) Detect
two-agent recurring co-traveling groups (RCGg) from RCGy; 3)
Detect k-agent recurring co-traveling groups (RCGy, k>=3) from
RCGg; 4) Refine RCGs to keep only maximal RCGs; 5) Output RCGs
that have at least K agents in the group. Only randomly generated
group IDs will be reported.

3.1.1 Detect RCGj. The pseudocode of this step is in Algorithm 1.
This step first processes raw trajectories/location traces by adding
spatial and temporal noise at a user-specified level and converting
them to a user-specified coordinate system (line 2). Then, it detects
agents who have recurring traveling patterns. For each agent, we
group visited locations into specified time windows. For each time
window of each agent, we run DBSCAN on visited locations to
obtain the largest cluster. If the largest cluster has at least Trp
visited locations (ensuring recurring visits on a co-traveling route),
and the area of the largest cluster’s MBR is less than or equal to
Tau (ensuring location specificity), then the largest cluster’s MBR
is the most-visited place (MVP) of the agent in that time window.
If an agent has at least TcT time windows that have MVPs, then
this agent has a recurring traveling pattern and is an RCG;j.

Algorithm 1 Detect Recurring One-agent Groups (RCG1)

Input: agents-trajectories/location traces, TWs, DBSCAN-eps (DE), DBSCAN-
min-samples (DS), Trp, Tct, Tau, €, Sens, Sent, coordinates, algorithm-choice
Output: RCG: {agent-id: [(TW1, MVP1), (TW2, MVP2), ...]}

1: Algorithm: Initiate RCG1 = empty dictionary
2: agents-trajectories = Process(agents-trajectories, €, Seng, Senr, coordinates)
3: if algorithm-choice is "RCPD-Adv" then
4: agents-trajectories = GetActiveAgents(agents-trajectories, Trp, TcT)
5: for (agent, visited-locations (VLs)) pair in agents-trajectories do
6: Initiate agentMVPs = empty list
7: TW-VLs = Group VLs by TW
8: for (TW, VLs) pair in TW-VLs do
9: MVP-mbr, MVP-mbr-area = MostVisitedPlace(VLs, DE, DS, Trp)
10: if MVP-mbr-area < Tay then: Add (TW, MVP-mbr) to agentMVPs
11 if Size(agentMVPs) >= Tct then: Add (agent, agentMVPs) to RCGq
12: Return RCG;

3.1.2 Detect RCG;. This step detects two-agent recurring co-
traveling groups from RCGj. By the anti-monotone property of the
RCG measurement (which we define and prove in Appendix C), we
only need to use RCG; groups to generate RCGy candidates as any
two-agent group containing an agent who is not an RCGj is not
an RCGgz. The pseudocode of this step is in Algorithm 2, lines 1-6
and 15. For each time window, the function TwoAgentColocations
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first generates two-agent combinations of RCG; groups that have
MVPs in that time window. TwoAgentColocations then prunes two-
agent combinations if the distance between the two agents’ MVPs
is greater than Tp or the MBR area of their MVPs is greater than
Tay. The remaining two-agent groups have group co-located areas
(GCAs) in the given time window (line 5). Finally, two-agent groups
having at least TcT (time window, GCA) pairs in their recurring
co-traveling routes are RCGy groups (line 15).

Algorithm 2 Detect Two-agent Groups (RCG2)

Input: RCGy, time windows (TWs), Tp, Tau, TcT, stepy, stepx
Output: RCGg: {two-agent-group (TAG): [(time window (TW)1, co-location-area
(CA)1), (TW2, CA2),...]}

1: Algo: Initiate RCG, = empty dictionary; RCGq = TransformRCG(RCG1, TWs)
2: for each (TW, agentsMBRs) pair in RCG; do
3: if algorithm-choice is "RCPD" then
4: agents-ids = get keys from the agentsMBRs dictionary
5: co-locations = TwoAgentColocations(TW, RCG1, agents-ids, Tp, Tau)
6: for each (TAG, CA) in co-locations do: Add {TAG: (TW, CA)} to RCG,
7: if algorithm-choice is "RCPD-Adv" then
8: Rtree-index, Rtree-bound = RTree(agentsMBRs)
9: buffered-grids = GenerateBufferedGrids(Rtree-bound, stepy, stepy, Tp)
10: for each buffered-grid in buffered-grids do
11: agents = Query(buffered-grid, Rtree-index)
12: co-locations = TwoAgentColocations(TW, RCG1, agents, Tp, Tay)
13: for each (two-agent-group (TAG), CA) pair in co-locations do
14: Update {TAG: (TW, CA)} to RCGg if not already in RCG,

15: Return RCG; = Keep TAG in RCG; with Size(group co-traveling route) >= Ter

Algorithm 3 Detect and Refine K-agent Groups (RCGg)

Input: RCGy, K, refine-RCG, Tar, Tau
Output: RCGk and RefinedRCGk
: Algorithm: Initiate k=2; RCGk=empty dictionary; currentRCG,=RCG,
: whilek > 0 do
RCGy+1 = DetectNextK(currentRCGy)
if RCGy.; contains zero recurring co-traveling groups then
RCGk: Keep RCGg in RCGk with k >= K
Return RCGg = Cloak(RCGk, Tar, Tau)
else
Add RCGg, to RCGk
9: k =k + 1; currentRCGy = RCGy, ¢
10: if refine-RCG is "Yes": then Initiate RefinedRCGk = empty dictionary
11: for each RCGy in RCGk do

> Algorithm 4

A U A

12: containedRCGy = FindContainedRCG(RCGy, RCGy.1)
13: maximalRCGy = remove containedRCGy from RCGy
14: Add maximalRCGy to RefinedRCGk

15: Return RefinedRCGg = Cloak(RefinedRCGg, Tar, Tau)

3.1.3 Detect RCGy. For RCGy groups with k greater than or
equal to three, we input RCGg into Algorithm 3, lines 1-9, to de-
tect RCGy,1 groups iteratively (line 3) until no larger RCGs can be
found (line 4). Line 6 cloaks any GCAs that are smaller than Ty, and
returns RCGg. The function DetectNextK in line 3 uses Algorithm
4, lines 1-9 and 19, to detect RCGy, groups from RCGy groups. In
Algorithm 4, for each time window, GenerateCandidates generates
(k+1)-agent group candidates from RCGy groups by matching the
first (k-1) agents (using the interest measure’s anti-monotone prop-
erty). Then, PruneCandidates prunes the (k+1)-agent groups whose
GCAs are greater than Tay. The area thresholds ensure the group
co-location in a time window is geographically meaningful and
spatially cloaked for privacy. Finally, the remaining (k+1)-agent
groups that have at least Tct (time window, group GCA) pairs in
their recurring co-traveling routes are RCGy,; groups (line 19).
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3.1.4 Refine and output RCGg. After detecting all sizes of
RCGs, we use Algorithm 3, lines 10-15, to keep only maximal RCGs.
FindContainedRCG in line 12 finds RCGy, groups contained in some
RCGy, 1 groups by checking whether an RCGy’s group members are
asubset of an RCGy, 1 ’s group members and whether the GCA of the
RCGy group is a sub-area of the GCA of the RCGy,; group in each
co-traveling time window. Line 13 removes the contained RCGs
at all k levels, leaving only maximal RCGs. Finally, RefinedRCGg
groups having at least K agents in each group are returned.

Algorithm 4 Detect (k+1)-agent Groups (RCGy,1)

Input: RCGy, time windows (TWs), Tcr, Tau, algorithm-choice
Output: RCGy,1: {(k+1)-agent-group: [(TW1, Areal), (TW2, Area2),...]}
1: Algorithm: Initiate RCGy = TransformRCG(RCGy, TWs); i = 0; Nrw =
Size(TWs); RCGy,1 = empty dictionary
2: for each (TW, groupsMBRs) pair in RCGy do
3 i=i+1
4 if algorithm-choice is "RCG" then
5: if i <= N7w then
6
7
8

generatedCan = GenerateCandidates(groupsMBRs)
prunedCan = PruneCandidates(generatedCan, groupsMBRs, Tay)
for each (group, locationMBR) pair in prunedCan do

9: Update {group: (TW, locationMBR)} to RCGy,1
10: if algorithm-choice is "RCPD-Adv" then
11: generatedCan = GenerateCandidatesFast(groupsMBRs)
12: if i <= (Ntw - Tct + 1) then
13: prunedCan = PruneCandidates(generatedCan, groupsMBRs, Ty)
14: if (Ntw - Tcr + 1) < i <= Nw then
15: prunedCan = PruneFilterCan(generatedCan, groupsMBRs, Ry, 1,
Tav)
16: for each (group, locationMBR) pair in prunedCan do
17: Update {group: (TW, locationMBR)} to Ry, 1
18: Ry.1 = Keep groups if Size(group co-traveling route) >= i - (NTw - Tcr)

19: Return Ry, = Keep (k+1)-agent groups with Size(group co-traveling route)>=Tct

3.1.5 An execution trace of RCPD. An example execution trace
is shown in Figure 3 and Table 1. In this toy example, no trajectory
pre-processing is needed. We use K =3, Trp = 3, Tt = 2, Tay =
20% of the study area, Tar, = 5% of the study area. There are five
agents: Black (BK), Blue(B), Green (G), Red (R), and Yellow (Y). The
agents’ trajectories are first divided into four time windows. Each
point in Figure 3 is an agent’s visited location in that time window.

Step 1: Detecting RCGj. For each time window (TW), we run
DBSCAN on each agent’s visited locations and keep each agent’s
largest cluster. For each agent, if the largest cluster has at least three
visited locations, and the area of the largest cluster’s MBR is less
than or equal to Tay, then the largest cluster’s MBR is the most-
visited place (MVP) of the agent in that time window. In Figure 3,
the MVPs of BK, R, G, B, and Y are labeled using rectangles with
their corresponding colors. In TW2, Y’s largest cluster is pruned
because it has only two visited locations. In TW3, Y’s largest cluster
is also pruned because the MBR area exceeds Tay. Table 1a shows
the MVPs of each agent in each time window. T (True) means an
MVP was found. F (False) means an MVP was NOT found. N (None)
refers to cases that do not exist or were pruned earlier. Labels T/N
and F/N reflect procedures that are implemented in RCPD but are
not needed in RCPD-Adv. BK is pruned as BK has only one time
window (TW2) having an MVP, which does not satisfy the Tct
requirement. Agents B, G, R, and Y have MVPs in two or more time
windows, and thus qualify as RCG; groups.
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Figure 3: Execution trace

Step 2: Detecting RCGy. In Table 1a TW1, four RCG; groups B,
G, R, and Y have MVPs. By combination, we get six candidate two-
agent groups: (B, G), (B, R), (B, Y), (G, R), (G, Y), and (R, Y). Group (B,
G) is pruned because the distance between B’s MVP and G’s MVP is
greater than Tp, the threshold MBR distance. Similarly, (G, R) and
(R, Y) are pruned. Since the areas of (B, R), (B, Y), and (G, Y) are less
than or equal to Tay, we find three two-agent co-locations in TW1.
Following the same procedure for the rest of the time windows, we
get Table 1b. T means a co-location is found between the agents in
the time window. F means no co-location is found. Labels N, T/N,
and F/N have the same meaning as in Step 1. “Yes/RE” means this
group is an RCGy but will be pruned after the refinement (discussed
in Step 4). Table 1b shows that there are five RCGy groups. (R, Y) is
pruned because it only co-locates in one time window (TW4).

Table 1: Results of execution traces. TW: time window. Qual.
#: Qualified number. T (True): an MVP/co-location was found.
F (False): no MVP/co-location was found. N (None): a case
that does not exist or was pruned earlier. Labels T/N and F/N
reflect procedures that are implemented in RCPD but are not
needed in RCPD-Adv. RE: being refined.

(a) Results of one-agent group detection

Groups TW1 | TW2 | TW3 | TW4 | Qual # of TWs | RCG,
Black (BK) F/N T/N F/N F/N 1 No

Blue (B) T T T T 4 Yes
Green (G) T T T T 4 Yes

Red (R) T T T T 4 Yes
Yellow (Y) T F F T 2 Yes

(b) Results of two-agent group detection

Groups | TW1 | TW2 | TW3 | TW4 | Qual #of TWs | RCG,
(B, G) F/N F/N T T 2 Yes/RE
(B, R) T T T T 4 Yes
(B,Y) T N N T 2 Yes
(G,R) F/N F/N T T 2 Yes
G,Y) T N N T 2 Yes
(R, Y) F/N N N T/N 1 No

(c) Results of three-agent group detection

Groups | TW1 | TW2 | TW3 | TW4 | Qual # of TWs | RCG3
B,GR | N N T T 2 Yes
B.GY) | N N N | TN 1 No
BRY) | F N N | TN 1 No
GRY) | N N N | T/N 1 No

Step 3: Detecting RCG3. RCG3 candidates are generated by merg-
ing RCGy groups that have the same first agent. For example, (B,
G) and (B, R) are merged to generate candidate (B, G, R) in TW3, as
they share the same B as the first agent. Since (B, G, R)’s GCA is less
than or equal to Tay, (B, G, R) forms a three-agent co-location in
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TW3. Note that the distance requirement between any two agents’
MVPs is automatically satisfied because any two agents of (B, G, R)
form an RCGg. Following the same procedure for the other time
windows, we obtain Table 1c. Note that (B, R, Y) in TW1 is pruned
because the area of the merged group exceeds T ay. From Table 1c,
we find that (B, G, R) is the only RCG3 that travels from Area3 in
TW3 to Area4 in TW4.

Step 4: Refinement. Since K=3, RCG3 is the only RCG and the
largest group found in this example; thus, no refinement is needed.
However, if we choose K=2, (B, G) is a qualified RCG; but will be
refined because it is contained in (B, G, R). Group (B, G) is a subset
of (B, G, R) with the same recurring co-traveling time windows
(TW3 and TW4). For each recurring co-traveling time window, (B,
G)’s GCA is a subset of (B, G, R)’s GCA. Thus, (B, G) is contained
in (B, G, R) and is labeled “RE” in Table 1b.

Step 5: Output. Since K=3, we only output groups with at least
three agents. The output will only contain randomly generated
group IDs. In this example, the output is {GroupX, three agents,
[(TW3, Area3), (TW4, Area4)]}.

3.2 RCPD-Adv

RCPD-Adv follows the same steps as RCPD while incorporating
extra efficiency strategies in Steps 1, 2, and 3.

3.2.1 Efficiency strategy for detecting RCGj. Before running
DBSCAN on each agent’s visited locations in each time window to
find MVPs, we only keep agents who have at least Tt time win-
dows containing at least Ty p visited locations. These are weaker
constraints than the requirements of RCGy, which prune unqual-
ified agents earlier to reduce the number of expensive DBSCAN
executions. This strategy is implemented by the GetActiveAgents
function in line 4 Algorithm 1.

3.2.2 Efficiency strategy for detecting RCG3. We noticed that
finding two-agent co-locations by combinations of all agents in the
whole study area (Algorithm 2, lines 1-6) generates an exponential
number of candidates (];] ), where N is the total number of RCGy,
and many of them have agents far from each other. For example,
in Figure 4a, generating the (Blue, Green) candidate co-location
and checking the agents’ distance is unnecessary because Blue
and Green are not even in the same area. Thus, we propose a
divide-and-conquer method (Algorithm 2, lines 7-14) to divide the
study area into buffered grids and generate two-agent co-locations
within each buffered grid. We also generate an R-tree index for
the minimum bounding rectangles (MBRs) of agents in each time
window, allowing for faster queries of agents within each buffered
grid (line 11). The GenerateBufferedGrids function divides the study
area into grids with specified x and y coordinate step sizes. It then
adds a buffer to each grid by (2 * Tp). Using buffered grids ensures
that co-locations at the boundary between two grids are not missed.
For example, in Figure 4a, co-location (Blue, Red) will be missed if
regular grids are used. However, using buffered grids (Figure 4b)
with a buffer size larger than Tp will include the edge cases. Using
buffered grids may generate duplicate candidates, as seen in the
example in Figure 4b, for (Blue, Red) in buffered-grids 1 and 2. Line
14 of Algorithm 2 guarantees that each co-location will only be
counted once.
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3.2.3 Efficiency strategy for detecting RCGj. Algorithm 4
lines 10-19 show the more efficient way to detect RCGy,; from
RCGy groups. GenerateCandidateFast generates (k+1)-agent RCG
candidates using the anti-monotone property and a divide-and-
conquer strategy. Specifically, the function divides k-agent groups
into partitions by their first (k-1) agents, generating (k+1)-agent
candidates within each partition. We also adopted and improved
a strategy from [8] to prune unqualified candidates as early as
possible: After processing the (Ntw — Tct + 1)th time window
(lines 10-13), PruneFilterCan (line 15) will filter out newly appearing
candidates because the remaining time windows are insufficient for
them to qualify. Also, at each remaining iteration i, line 18 will prune
candidates who currently do not have at least (i — (Ntw — TcT))
recurring co-traveling time windows, which means their recurring
co-traveling time windows will not meet the Tct threshold, even if
the unprocessed time windows would all be qualified (a numerical
example is in Appendix D).

3.24 RCPD-AdVv efficiency strategy execution traces. In Step
1, BK is pruned as it only has TW2 with at least three visited
locations. Thus, RCPD-Adv eliminates the need for BK to go through
the DBSCAN procedure, and the BK row in Table 1a is labeled as
“/N” In Step 2, the study area in each time window is divided into
four buffered grids. Take TW2 in Figure 4b as an example: querying
on buffered grid 1 gives us B and R, generating the RCG; candidate
(B, R). Similarly, querying on buffered grid 2 generates a candidate
(B, R). Buffered grids 3 and 4 do not find candidate RCG; groups (BK
is pruned in Step 1). After collecting candidates from all buffered
grids and removing duplicates, only (B, R) is left. Thus, using the
RCPD-Adyv algorithm in TW2 eliminates the need to generate and
process (B, G) and (G, R) from the start. These groups are now
labeled “/N” in Table 1b, column TW2. The same buffered-grid
procedure eliminates the need to generate and process (B, G), (G, R),
and (R, Y) in TW1 and (R, Y) in TW4. In Step 3, groups (B, G, Y) and
(G, R, Y) will not be generated in the first place because they do not
appear before TW4, and their remaining time windows (TW4) are
insufficient for them to qualify. Group (B, R, Y) will be generated
in TW1 but will be pruned in TW3 because there is only one time
window left, and the candidate currently has zero qualified time
windows. Even if the last time window would qualify, this group
would not meet the requirement of Tct. Thus, only (B, G, R) will
be processed and investigated in TW4. Group (B, G, R) is an RCGs.
Steps 4 and 5 are the same as for RCPD.

In the example we have presented, RCPD-Adv saves 20% of proce-
dures in Step 1, 33% of procedures in Step 2, and 50% of procedures
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in Step 3. As the dataset size increases, RCPD-Adv becomes more
efficient by orders of magnitude.

4 Theoretical Evaluation

Theorem 1. Without noise distortion, the RCPD and RCPD-Adv al-
gorithms are complete.

Proof. The RCPD and RCPD-Adv algorithms are complete if they
find all RCGs that satisfy the threshold conditions. When no noise
is added, no true patterns will be distorted and missed. We prove
this by showing that all steps of the algorithms do not miss any
RCGs. Step 1 does not miss any RCG;: Only agents who do not meet
the threshold requirements (Trp, Tay, TcT) are removed. Also,
GetActiveAgents prunes agents early using less strict constraints
than the RCPD requirements. Step 2 does not miss any RCG2: RCPD
uses the anti-monotone property to generate combinations of all
RCGj agents and prunes each candidate by the thresholds. No more
candidates can exist. RCPD-Adv uses buffered grids with a buffer
size of (2 * Tp) to include all edge co-locations. The candidates are
only pruned by the RCPD thresholds. Step 3 does not miss any RCGy.:
RCPD and RCPD-Adv use the anti-monotone property to generate
candidates, which includes all cases. RCPD identifies qualified time
windows for each agent and prunes agents based on Tct. Thus,
no group is missed. RCPD-Adv prunes candidates early only when
they do not have enough qualified time windows, even if the re-
maining time windows all qualify. Thus, no group is missed. Steps
4 and 5 do not miss any RCGs: Step 4 simply removes RCGs that are
contained in larger RCGs. Step 5 simply removes groups with less
than K agents and cloaks GCAs that are smaller than Tay..

Theorem 2. Without noise distortion, the RCPD and RCPD-Adv
algorithms are correct, i.e., any returned RCG satisfies Definition 3.
Proof. In Step 1, Ty p, Tay, and Tt are checked for each candidate
to detect RCGy. In Steps 2 and 3, Tp, Ty, and Tct are checked for
each candidate to detect RCGy, k >= 2. In Step 5, K and Txy, are
checked for each candidate to output RCGg. Thus, the returned
RCGs meet the requirements of Definition 3.

5 Experimental Evaluation

Experiment goals: We validated the proposed methods with four
types of analysis: 1) Algorithm Testing. We generated synthetic
trajectory data to test the accuracy, recall, and precision of the
proposed methods. We also tested how the added noise level €
influences the model performance. 2) Comparative analysis. We
compared our proposed methods with existing co-occurrence min-
ing algorithms to highlight the efficiency advantages of RCPD and
RCPD-Adv, as well as the fundamental differences in the patterns
they detect. We also compared the runtimes between RCPD and
RCPD-Adv to show the effectiveness of our efficiency strategies.
3) Sensitivity analysis. We performed a sensitivity analysis on our
proposed methods to evaluate the influence of the number of agents,
threshold-count-time-window (TcT), and threshold-largest-cluster-
points (T p) on runtime, number of recurring co-traveling groups
detected, and size of the largest recurring co-traveling group. 4)
Case study. We conducted a case study using real location traces
from Los Angeles County in the US to demonstrate how the pro-
posed algorithms can be applied to geo-anomaly detection. The
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implementation of these evaluations is available online?.

Dataset: We used a subset of the Veraset mobility dataset within the
MBR of Los Angeles County in the US between February 5 and Feb-
ruary 26, 2019, for the comparative analysis, sensitivity analysis, and
the case study. This data contained anonymized IDs and location
information (latitude, longitude, timestamp) from mobile devices.
To protect privacy, we randomly selected a reference point within
the MBR and converted the (longitude, latitude) coordinates into
relative coordinates (x, y) in meters. The data contained 20K agents,
and each agent had more than 30 (x, y, timestamp) pairs within
this period and region. There were a total of 15.5 million location-
time pairs. On average, each agent had 775 location-time pairs.
The median number of location-time pairs was 161. These location
traces were divided by weekend and weekday, and by 24 hours,
resulting in 48 time windows. We received approval from our uni-
versity’s Institutional Review Board to conduct this research using
anonymized real trajectory data, including the specific anonymity
methods employed to protect participant privacy.

5.1 Algorithm Testing

We generated synthetic trajectories to test the accuracy, recall, and
precision of the proposed algorithms. We used four time windows
and three group sizes (2, 3, and 4-agent groups). Thus, for each
group size, a group could co-locate in zero to four time windows,
resulting in 15 patterns, such as a 3-agent group co-locating in one
time window or a 4-agent group co-locating in three time windows.
For each pattern, we generated 100 groups, resulting in 1500 test
cases, 500 cases for each group size. This gave us 2 * 500 + 3 =
500 + 4 = 500 = 4500 agents in total. Each test case was generated
in a 200m X 200m area. We set the threshold-count-time-window
(Tcr) equal to two. Thus, only groups co-locating in two to four
time windows were considered recurring co-traveling groups (900
positive cases). Figure 5 shows two examples of these test cases.
In Figure 5a, a synthetic four-agent group recurringly co-travels
from Timel-Areal to Time2-Area2 to Time3-Area3. By contrast,
the three-agent group in Figure 5b only co-locates in Time4-Area4,
making it a non-co-traveling group. To generate a group co-located
area (GCA), we randomly generated agents’ anchor points within
15m. For each anchor point, we generated a dense circle with 5m
radius as the agent’s most-visited place (MVP). The MBR of these
dense areas is the group’s GCA. Varying the number of agents and
time windows to generate GCAs resulted in 1500 test cases.
Feeding each test case to RCPD returned one of four possible
results: 1) A true positive (TP), where the test case contained a
recurring co-traveling group and the detected pattern had the same
agents co-traveling in the same time windows. Also, each MVP
detected was less than five meters away from the true MVP; 2) A
true negative (TN), where no recurring co-traveling patterns were
detected and the test case was a negative case; 3) A false positive
(FP), where one or more recurring co-traveling groups were found
when the test case was a negative case; 4) A false negative (FN),
where a true recurring co-traveling group in a test case was not
detected. We used accuracy ((TP + TN)/(TP + TN + FP + FN)),
precision (TP/(TP+FP)), and recall (TP/(TP+FN)) to measure the
testing results. We also varied the differential privacy noise level €

20ur code: https://github.com/ShuaiAn7/Recurring-Co-traveling-Pattern-Detection
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to show how noise affects model performance. The results in Figure
6 show that the model is complete and correct when no noise is
added. The model achieves high precision scores across various
noise levels, indicating that the probability of detecting spurious
patterns is low. This is due to the pattern complexity, which makes
it difficult to pass all threshold controls for spurious patterns. As
the noise level increases, the accuracy and recall scores decrease,
driven by the increasing number of false negatives. This is because
noise dissolves MVPs into the background. Thus, users can decide
the noise level based on the accuracy and recall requirements of
their projects. Also, the runtime increases when noise is added.
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Figure 6: Synthetic Data Testing Results

5.2 Comparative Analysis

As there is a lack of existing methods that detect recurring co-
traveling routes like ours, we compared our approaches with the
most related existing spatiotemporal co-occurrence mining meth-
ods we are aware of. We chose MDCOP and MDCOPfast [8] be-
cause they detect subsets of features/agents that co-occur across
time windows in a way most comparable to ours, and their limita-
tions are representative of those found in other related methods
[6, 16, 29]. Agent groups detected by MDCOP/MDCOPfast may par-
tially overlap with agent groups from our methods if some agents’
visited locations are concentrated in a small area. To implement
MDCOP/MDCOPfast, we treated each agent in our data as a feature
and each visited location as an instance to calculate participation
indices in each time window. During the experiment, we observed
that MDCOP/MDCOPfast could not process location traces of 20K
agents within a reasonable time. To make the results compara-
ble, we randomly selected 1,000 agents for this analysis. Shared
thresholds were set the same. The results are shown in Table 2. The
MDCOP approach detected six two-agent co-occurrence groups.
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We examined those groups and found that they did not have MVPs
in each time window. Thus, no co-traveling routes existed, and they
were not recurring co-traveling groups, as defined in our study.
Consistently, the RCPD approach did not detect any recurring co-
traveling groups either. In addition, runtimes of RCPD/RCPD-Adv
are roughly 0.07% of MDCOP/MDCOPfast’s runtimes, showing
better scalability of the proposed approaches. We also noted that
MDCOPfast actually ran slightly slower than MDCOP, which may
have been due to the higher computation overhead in location trace
data. By contrast, RCPD-Adv ran faster than RCPD even with more
overhead computation from this small dataset.

Table 2: Comparison of Different Algorithms

Algo Runtime (minute) | Results

MDCOP 1124.6853 Six 2-agent groups; No co-traveling groups
MDCOPfast | 1141.656 Six 2-agent groups; No co-traveling groups
RCPD 0.8833 No co-traveling groups

RCPD-Adv | 0.6821 No co-traveling groups

Essentially, RCPD/RCPD-Adv detected patterns differently from
MDCOP/MDCOPfast. In the co-location detection step, MDCOP/
MDCOPfast considers all instances within a study area in a time win-
dow. They focus on whether two visited locations are co-located and
ignore where in the study area these locations co-locate. By contrast,
RCPD/RCPD-Adyv focuses on the concentration of visited locations
in a specific area and ignores the other scattered locations. Also,
the Trp threshold in RCPD requires a minimum number of visited
locations participating in co-locations, while the MDCOP approach
does not have this requirement. Thus, RCPD/RCPD-Adv patterns
are recurring co-traveling groups containing both co-located times
and specific GCAs (specified by MBRs), while MDCOP/MDCOPfast
patterns are global co-occurrences in the study area as a whole with
no required minimum number of participating visited locations.
Considering runtime and output, MDCOP/MDCOPfast is more suit-
able for global spatiotemporal co-occurrences with a small number
of features and instances and without the need to identify recurring
co-traveling routes. RCPD/RCPD-Adv is more suitable for process-
ing extensive trajectory/location trace data and a large feature set
to detect recurring regional patterns. A more detailed discussion of
the differences between the two methods is provided in Appendix
E using illustrative examples.

5.3 Sensitivity Analysis

We performed a sensitivity analysis on our proposed methods to
evaluate the influence of the number of agents, threshold-count-
time-window (TcT), and threshold-largest-cluster-points (T p) on
runtime, number of recurring co-traveling groups (RCGs) detected,
and size of the largest RCG. We plotted the runtime in its natural log
form because the runtime difference between RCPD and RCPD-Adv
is by orders of magnitude. Taking natural logs makes comparing
two curves in the same figure easier. Also, in all experiments, RCPD
and RCPD-Adv output exactly the same RCGs when no noise was
added (Appendix F). Here, we provide results with the noise level
at € = 0.5, Seng=5m, and SenT=100s. The noise slightly reduced
accuracy and caused slight discrepancies in results between RCPD
and RCPD-Adv, but the sensitivity patterns remained the same.
In the first experiment, we fixed TcT = 3 and Ty p = 5 and varied
the number of agents from 3K to 15K. Figure 7a shows that the
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Figure 7: Sensitivity analysis on runtime and RCG count
under varying conditions: number of agents, threshold count
time window (TcT), and threshold largest cluster points (T p).

runtimes of RCPD and RCPD-Adv increase at a slower rate as the
number of agents increases. This indicates that the algorithms have
a good scaling property and can handle larger datasets without an
exponential runtime increase. In addition, the margin between the
two lines is increasing, indicating that RCPD-Adv gets progressively
more efficient than RCPD as the data size increases. Figure 7b shows
that as the number of agents increases, the total number of RCGs
increases linearly while the size of the largest RCG increases at a
slower rate.

For the effect of Tct, we fixed the number of agents = 10K and
Trp =5, and varied Tt from 3 to 15. Figure 7c shows that both algo-
rithms have almost linearly decreasing log runtime, meaning that
the runtime decreases exponentially as the TcT increases. RCPD-
Adv remains significantly more efficient than RCPD by orders of
magnitude and exhibits good scalability. Tct is the minimum num-
ber of required qualified time windows of an RCG. A higher Tct
means a stricter requirement for detecting RCGs. Thus, as Tct
increases, the number of generated candidates decreases at an ac-
celerating rate, while the number of pruned candidates increases
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at an accelerating rate, resulting in an exponentially shorter run-
time. The number of detected RCGs and the largest RCG size also
decrease at a slower rate, as shown in Figure 7d.

Lastly, we tested the effect of Ty p. We fixed the number of agents
= 10K and Tct = 3, and varied Trp from 5 to 25. Figure 7e shows
two convex decreasing lines, meaning the runtime decreases super-
exponentially as the threshold increases. RCPD-Adv remains sig-
nificantly more efficient than RCPD by orders of magnitude and
exhibits good scalability. A larger Trp value means a stricter re-
quirement for a cluster to be an MVP. Thus, fewer candidates will be
generated, and more candidates will be pruned with exponentially
shorter runtime. The total number of detected RCGs and the largest
RCG size decrease at a slower rate, as shown in Figure 7f.

5.4 Case Study
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Figure 8: Case Study in Los Angeles, USA

Our case study had two goals: The first goal was to show how
recurring co-traveling patterns can be detected from real-world lo-
cation traces. The second goal was to show how anomalies naturally
arise as rare cases, deviations from the norms, or by controlling
user-specified thresholds. We used location traces of 20K agents
from the Veraset mobility dataset within the MBR of Los Angeles
County in the US between February 5 and February 26, 2019. For
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further privacy protection, we used relative coordinates with a ran-
domly selected reference point. For a simpler demonstration, we
did not add noise to these location traces and did not restrict the
number of agents in a group. We set TcT=3 and T p=5.

We ran RCPD-Adv on the data and got the RCGs shown in
Figure 8a. The total runtime was 13.5 minutes. There were 1620
RCGs found, and the largest RCGs had 12 agents. The number of
groups found decreases at a slower rate as the group size increases.
Figure 8b plots examples of the routes co-traveled by two and
three-agent groups. For example, we can see that the three-agent
group #120 co-travels on weekdays between 7-8 am and 6-7 pm in
a recurring pattern. If we use latitude-longitude and location type
(e.g., residential area, business area), we can infer the type of RCG,
such as a work-home commuting group.

Geo-anomalies can be identified as rare cases or deviations from
the norms. For example, Figure 8c shows the distribution of the num-
ber of co-traveling time windows of 123 six-agent RCGs. Among
the 123 groups, 122 have less than 15 co-traveling time windows,
and only one group has 20 co-traveling time windows. In addition,
the co-traveling route indicates that during 20 time windows, the
six agents co-located in the same area of 382 m2, which is unusual.
Thus, this group is a potential anomaly for further investigation.
Users can also detect anomalies by controlling thresholds. For ex-
ample, we can set Ty p=50 and TcT=20 to detect co-traveling groups
that appear abnormally frequently in group co-located areas and
co-travel in a very high number of time-windows. Considering the
sparsity of location trace data, these groups are unusual. After rerun-
ning the algorithm with the anomaly thresholds, we identified four
2-agent RCGs and two 3-agent RCGs as potential geo-anomalies.

6 Related Work

Shekhar and Huang [21] introduced the concept of spatial co-
location and its interest measures, the participation ratio and partic-
ipation index, to find spatial features that frequently locate together.
Later refinements, e.g., [27, 30], improved the computational effi-
ciency of co-location mining. Today, regional co-location algorithms
[9, 18] detect subsets of features that co-locate in certain localities
in a study area. Statistically significant co-location algorithms were
proposed to reduce chance patterns [4, 14]. However, these spatial
co-location methods focus on features that do not move frequently,
such as business locations, or that occur in a single time period,
such as a day. Thus, they are not applicable to detect moving pat-
terns. One recently proposed method [5] to discover co-location
patterns in flow data was able to detect agent groups co-located
in both trip origins and destinations. However, this method also
does not incorporate time into its mining process and cannot detect
recurring co-traveling routes.

A number of co-occurrence mining algorithms have been de-
veloped to detect co-locations across time in spatiotemporal data.
Of these, MDCOP algorithms [8] are the most related to our prob-
lem. The MDCOP methods divide spatiotemporal data into time
windows and detect co-location patterns using the participation
index in each time window. In other words, they consider all in-
stances occurring in the entire study area for each time window
without requiring a minimum number of participating instances.
Essentially, the methods indicate whether two agents co-locate.
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However, they cannot specify where in the study area co-locations
occur in a recurring manner. Indeed, an extensive review of the
literature [3, 6, 7, 12, 13, 16, 19, 20, 24-26, 28, 29] revealed no meth-
ods of spatiotemporal co-occurence mining without this limitation.
For example, another recent study [29] proposed an incremental
spatiotemporal flow co-location quotient to detect spatiotemporal
associations between two types of flow. The method treats each
origin-destination (OD) flow as an instance and calculates the spa-
tiotemporal distance between two flows. As OD flows from different
features can co-occur across the entire study area, this method still
has the same limitation as MDCOP regarding recurring co-traveling
pattern detection. To our knowledge, ours is the only method that
can detect concentrations of visited places in a study area, and by
extension, the specific routes recurringly traveled by agents.

7 Conclusion and Future Work

We formalized the problem of recurring co-traveling pattern detec-
tion and proposed a recurring co-traveling group interest measure,
along with two accompanying algorithms - RCPD and RCPD-Adv.
The algorithms provide options for incorporating differential pri-
vacy and k-anonymity. We theoretically proved the correctness
and completeness of the proposed algorithms. Experiments on real-
world location trace data show that RCPD runs faster than the
baseline and can identify co-traveling routes that the baseline can-
not. RCPD-Adv also runs faster than RCPD by orders of magnitude.
Case study results demonstrate that our approach can be applied
to geo-anomaly detection.

In future work, we plan to further improve computation ef-
ficiency by exploring new ideas, such as dynamically breaking
buffered grids with a large number of agents into smaller ones. We
also plan to use sliding time windows and dynamic time-window
length to improve temporal precision. We plan to do more thorough
experiments using more realistic synthetic data. As there is a lack of
literature on recurring co-traveling route detection, we will explore
new evaluation metrics for comparative analysis and compare our
approach with more co-occurrence mining methods. Additionally,
we plan to provide more optimized and user-friendly parameter
settings, along with detailed guidance on parameters.
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A Example of an Exponential Number of
Candidate Groups

To detect a seven-agent recurring co-traveling group [A, B, C, D,
E, F, G] that co-travels in every time window, we need to generate
and process the numbers of sub-group candidates shown in Table
3. For example, RCG; candidates contain [(A, B), (A, C), (A, D), (A,
E), (A, F), (A, G), (B, C), (B, D), (B, E), (B, F), (B, G), (C, D), (C, E), (C,
F), (C, G), (D, E), (D, F), (D, G), (E, F), (E, G), (F, G)].

Table 3: Candidate Counts for Each RCG Size

RCG Size Number of Candidates
RCG, 7

RCG, 21

RCG3 35

RCGy 35

RCG;s 21

RCGqg 7

RCG; 1

Total 127

B Helper Functions

Size(list): this function returns the number of elements in a list.
Process(agents-trajectories, €, Seng, Sent, coordinates): This
function adds noise to locations and timestamps of agents-trajectories
at a noise level specified by arguments €, Seng, and Senr. It also
converts agents-trajectories to specified coordinate systems, such
as relative coordinates (x, y).
GetActiveAgents(agents-trajectories, Ty p, Tcr): This function
keeps agents who have at least TcT time windows during which
there are at least Ty p visited locations in each time window. These
agents are called active agents. This function returns active agents
and their trajectories/location traces.
MostVisitedPlace(visited-locations, DBSCAN-eps, DBSCAN-
min-samples, Ty p): For a given group of visited-locations, this
function uses DBSCAN with specified hyperparameters to find the
largest cluster with at least Trp visited locations. This function
returns both the MBR of the largest cluster and the area of the MBR.
If no such cluster exists, this function returns None.
TransformRCG(RCGy, time windows): This function trans-
forms the RCGy, dictionary from one using the recurring co-traveling
groups as keys to one using time windows as keys.
RTree(agentsMBRs): Given a list of agent MBRs, this function
constructs an R-tree index of the MBRs and their corresponding
agents. The function then returns the R-tree index and the index’s
boundary, which is the MBR of all given MBRs
GenerateBufferedGrids(boundary, stepy, stepx, Tp): This func-
tion divides the study area, defined by the boundary input, into
grids with specified x and y step sizes. It then adds a buffer to the
grid by (2 * Tp). These buffered grids avoid missing patterns on the
boundary between grids.

Query(buffered-grid, Rtree-index): This function uses the Rtree-
index to find agents whose MBRs overlap with a given buffered
grid. The function then returns a list of agents.

An et al.

TwoAgentColocations(time-window, RCG1, agents, Tp, Tay):
For a given time window and a given list of agents, this function
finds two-agent co-location groups. The candidate two-agent co-
location groups are generated by combination. The candidates are
then pruned if the distance between the two agents’ MVPs is greater
than Tp or the GCA is greater than Tay.

GenerateCandidates(groupsMBRs): This function generates RCGy, 1)

candidate groups from RCGy by matching the first (k-1) agents be-
tween any two RCGy groups.
GenerateCandidatesFast(groupsMBRs): Given k-agent recur-
ring co-traveling groups and their MBRs, this function generates
RCGk,1) candidates using the anti-monotone property and a divide-
and-conquer strategy. Specifically, the function divides k-agent
groups into partitions by their first (k-1) agents. For each partition,
the function generates RCGy, ) candidates. Finally, the function
collects all candidates and removes duplicates.
PruneCandidates(generatedCan, groupsMBRs, Tay): This func-
tion prunes (k+1)-agent candidate groups whose GCAs are greater
than Tay. A group’s GCA is calculated using groupsMBRs.
PruneFilterCan(generatedCan, groupsMBRs, RCGy, 1, Tav):
This function first removes generated (k+1)-agent candidate groups
(generatedCan) that have not been in RCGy, ; yet. Then, it does the
pruning as function PruneCandidates.

DetectNextK(RCGy): Given RCGy, this function uses Algorithm 4
to output RCGy, 1.

FindContainedRCG(RCGy, RCGy,1): This function finds RCGy
groups that are contained in some RCGy, 1 groups. An RCGy, group
is contained in an RCGy, 1 group when 1) the RCGy group members
are a subset of the RCGy,; group members, 2) for each recurring
co-traveling time window, the GCA of the RCGy, group is a subset
of the GCA of the RCGy, group.

Cloak(RCGKk, Tay, Tay): This function searches RCGg for GCAs
smaller than T4y . The function then generates a random MBR of
size in [Tar, Tau] to cloak those small GCAs.

We control two DBSCAN hyperparameters: 1) DBSCAN-eps,
which is the maximum distance between two visited locations to
be considered neighbors; and 2) DBSCAN-min-samples, which is
the minimum number of visited locations needed within a neigh-
borhood to consider a visited location as a core point.

C The RCG Interest Measurement Has the
Anti-monotone Property

Lemma 1. If Distance(GCAg;, TW;) <= Tp and Gj C Gi, then
Distance(GCAgj, TWy) <= Tp.

Proof. By definition, Distance(GCAg;, TWt) <= Tp is equivalent to
max(distance(MVP,, MVP})|a, b € Gi) <= Tp, where distance(MVP,,
MVPy) is the distance between the MVP of a and the MVP of b. a and
b are any agents in Gi. Thus, this condition means the maximum
distance between any two agents in Gi is less than or equal to the
distance threshold. Since Gj C Gi, any two agents of Gj belong to
Gi. Thus, Distance(GCAg;j, TW¢) <= Distance(GCAg;, TW¢) <= Tp.

Lemma 2. If Area(GCAg;, TWi)e [T ar, Tayl and Gj € Gi, then
Area(GCAGj, TW;)E [TAL’ TAU]~

Proof. By definition, Area(GCAg;, TWi)€ [Tar, Taul =
Area(Ugegi(MVPa, TW)€ [TAL, Taul, where Ugegi(MVPa, TWY)
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Figure 9: Differences in co-locations between MDCOP and
RCPD

is the union of the MBRs of all agents of Gi in TW4. Since Gj € Gi,
then for any a€Gj, a€Gi. Thus, U e j(MVPa, TW) € Ugegi(MVPa,
TWt). Thus Area(GCAgj, TWt) = Area(Ugegj(MVPa, TWY)) C
Area(UaeGi(MVPa, TWt)) = Area(GCAGi, TWt)E [TAL’ TAU] .

Theorem 3. The RCG interest measure has the anti-monotone prop-
erty. If a group is an RCG, then any sub-group with greater than or
equal to K agents of the RCG must also be an RCG. Alternatively, if a
group is not an RCG, then none of its super-groups can be an RCG.
Proof. From Lemma 1 and Lemma 2, we get that for any time
window ¢, if Distance(GCAgi, TW4) <= Tp, Area(GCAgi, TWi)e
[TaL, Taul, and Gj C Gi, then Distance(GCAg;, TW¢) <= Tp and
Area(GCAg;j, TWi)€ [TaL, Taul. Thus, if there are n time win-
dows where the Distance and Area conditions hold for Gi, and
n>=Tcrt, then during the same n time windows the Distance and
Area conditions hold for Gj. In addition, Gj has a cardinality >=
K. Thus, Count(t € T)(Distance(GCAg;j, TWt) <= Tp, Area(GCAg;,
TWi)e [TaL, Taul, Cardinality(Gj) >= K) >= TcT, which meets
Definition 3. Thus, Gj is an RCG, and the RCG measure has the
anti-monotone property.

D Example of the Efficiency Strategy of Step 3

Assume there are ten time windows and Tct = 3. At the ninth
iteration, if a candidate has less than 9 — (10 — 3) = 2 recurring
co-traveling time windows at this step, it will be pruned because
even if the last time window qualifies, this candidate would have
fewer than three recurring co-traveling time windows, disqualifying
regardless the last time window being checked.

E Comparison of MDCOP and RCPD

MDCOP and RCPD differ on four fronts. First, MDCOP detects
global co-locations using visited locations, while RCPD detects re-
gional co-locations using concentrations of visited locations. Figure
9 gives examples of differences in co-locations between the two
methods. Assume that the participation index (PI) threshold is equal
to 0.5 and Tp is equal to 10m, in Figure 9a, Blue and Red co-locate in
MDCOP as PI(Blue, Red) = 4/7 > 0.5. However, Blue and Red do
NOT co-locate in RCPD because the distance between their MVPs
is 20m, which exceeds Tp. In Figure 9b, Blue and Red co-locate
in MDCOP because PI(Blue, Red) = 1 > 0.5. But Blue and Red do
NOT co-locate in RCPD because they do not have MVPs. In Figure
9c, Blue, Red, and Yellow do NOT co-locate in MDCOP because
PI(Blue,Red) = 1/3 < 0.5, while they do co-locate in RCPD as
their MVPs are close to each other. Second, the Trp threshold in
RCPD requires a minimum number of visited locations participat-
ing in co-locations, while the MDCOP approach does not have this
requirement. In MDCOP, ten participating visited locations out
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of twenty total visited locations result in the same participation
ratio as one participating visited location out of two total visited
locations. Thus, the MDCOP approach does not guarantee recur-
ring patterns. Third, outputs from MDCOP will not satisfy RCPD’s
societal applications, which require knowing specific GCAs and
recurring co-traveling routes. Fourth, MDCOP does not consider pri-
vacy protection, while RCPD considers privacy protection through
de-identification, differential privacy, and k-anonymity.

F Sensitivity Analysis Results with No Noise
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