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Figure 1: Deployment of a glider from the RV Meteor in the Tropical Altantic - Photo by Mario Miiller (GEOMAR).

Abstract

Unsupervised anomaly detection (AD) on scientific sensor data is
challenging due to the absence of labels, heterogeneous sequence
lengths, and mixed anomaly types. We present a case study and an
evaluation process for AD on multivariate data-sequences recorded
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by an autonomous ocean glider. The dataset consists of 341 variable-
depth flights (3-920 m, 1 m vertical resolution) collected by glider
IFMO03 during R/V Meteor’s cruises M105 and M106 in the Cen-
tral Tropical Atlantic. We train a compact variational recurrent
autoencoder with a CNN preprocessing layer and bidirectional
LSTM encoder (16-dimensional latent) and a lightweight decoder.
Reconstruction error (MSE) yield flight-level anomaly scores. In lieu
of labels, we evaluate the AD system by means of oceanographic
knowledge via expert inspection, separation of reconstruction er-
ror between normal flights and anomalies, and clustering of the
learned embedding. Moreover, we present the result of the model
in its geospatial context. Our contribution is a practical case-study
of deploying unsupervised AD on real-world, unlabelled oceano-
graphic data.
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1 Introduction

Anomaly Detection (AD) is the task of finding anomalous or erro-
neous samples in data. This can be very useful in many sciences
and applications, where measured data is necessary for empirical
research and verification. In this paper we present a case study
of the application and evaluation of unsupervised anomaly detec-
tion methods on oceanographic data. More specifically, we analyse
the measurement of autonomous ocean gliders (more details be-
low). These gliders are highly sensitive measuring platforms of
ocean parameters and there is a large range of anomalies that can
occur without categorization. The spurious nature of the anom-
alies makes this task entirely unsupervised, which means there are
no labels and validation sets at all. Nevertheless, this data is used
in downstream oceanographic models and research (at GEOMAR
and other institutions), such as [8]. This makes the application and
analysis of anomaly detection so important, but also so challenging.

Related work

The challenge of unsupervised anomaly detection evaluation.
Ma et. al [11] emphasized in their work that unsupervised model
selection in context of outlier detection is "notoriously difficult"
due to the lack of validation data. Hence, the authors claim that
the problem of unsupervised model selection for outlier detection
is "vastly understudied" among the literature. Furthermore, they
state that the state-of-the-art relies on internal model evaluation
approaches, which nevertheless primarily depend on unlabeled
input data and outlier scores that are individually based on strong
assumptions.

Difference to internal evaluation of clusterings. Marques et.
al [12] independently are in consensus with Ma et. al by stating
that "the unsupervised evaluation of outlier detection results is still
virtually untouched in the literature". The authors also oppose in-
ternal outlier detection validation to internal clustering validation
by stating that while the former has been mostly overlooked in
the literature, the latter has been applied and is mostly accepted as
useful. Furthermore, the authors raise the claim that "It is impor-
tant to acknowledge that no single index can capture all possible
facets of the unsupervised outlier detection problem", a statement
that underlines the relevance of this work in proposing an outlier
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detection evaluation measure capable of dealing with heterogenous
sequence lengths and mixed anomaly types.

From evaluation of outliers in unsupervised settings to eval-
uation of outliers in time series and sequences. Getting more
specific from the challenges of evaluating outlier detection results in
unsupervised settings to anomaly detection in time series, Schmidl
et. al. [16] investigated 71 outlier detection methods (supervised
and unsupervised) on 976 time series datasets, accounting for dif-
ferences in sequence lengths and type of anomaly detected. The
authors found that most anomaly detection algorithms in the study
exhibited high sensitivity with respect to their parameter settings.
Notably, this work relies on external evaluation metrics and con-
ducts the tests on single types of anomalies, not considering datasets
exhibiting a mixture of different outlier types. Since neither of the
discussed prior work elaborate on outlier detection evaluation on
sequences exhibiting heterogenous lengths, mixed types of anomalies,
in unsupervised settings, it is of utmost relevance to address these
challenges within this work.

In the scientific literature there are plenty of works on anomaly
detection [16]. Many that directly apply clustering [19] or apply sta-
tistical models [15] cannot be applied to our problem because glider
flights have heterogeneous lengths and the anomalies are highly
irregular. The improvement of Deep Learning models expanded
our capabilities to compress the information. Beside making possi-
ble to reach performances in supervised tasks, learning expressive
representations of complex data has proven a strong values also for
AD purposes [14].

While statistical and shallow machine learning AD models try
to identify anomalies via feature-engineering or analysing the sta-
tistical properties of the data, Deep learning anomaly detection
methods typically leverage the reconstruction error or the latent
space topology to find abnormal data [16]. This usually means that
direct interpretation of the detection "rationale" is not possible,
since the detection function is not based on the actual features of
the data. Therefore, it is not easy to evaluate such methods when
dealing with real-world, unlabelled datasets.

The focus of many recent works in the machine learning com-
munity has been on developing methods with strong performance
on benchmark datasets [9]. Even though these methods are unsu-
pervised they still use labels and metric like ROC for evaluation [1].

Hence in the absence of any labels, choosing the right method for

a given real world task (that is not identical to existing benchmark
settings) is very difficult, and requires an extensive evaluation of
the results. A lot of downstream (in our case oceanographic) science
depends on this data.
Contribution Therefore in our case study, we present an evalu-
ation process and exemplary results that show how to work with
completely unlabelled data. We discuss where the difficulties lie
and, even though the task are complex and have no univocal solu-
tion, which tools and visualisation can actually help in a practical
setting and where more research is necessary. In summary, the
main contribution of our research is describing the evaluation of
established unsupervised anomaly detection baselines in unlabelled
real-world setting.
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Anomalies In The Depths

Autonomous Ocean Gliders While ship-deployed profilers (e.g.
CTD rosettes) still represent the standard in seagoing physical ob-
servations, in recent years, autonomous ocean gliders have rapidly
increased in popularity [13, 17]. They provide a flexible and conve-
nient way to survey the waters beyond the course of the mother-
ship, without requiring active attention from the researchers (beside
deployment, course planning and retrieval), and being able to oper-
ate also with adverse sea and weather conditions [17]. Moreover,
due to their size and good hydrodynamic properties, autonomous
gliders have a minimal impact on the surrounding water compared
to ship-based sensors, since the water displacement from the ship’s
hull and propellers interferers with the shallow water layers. In-
deed, they represent the optimal platform to perform microstructure
sensors surveys to collect uncontaminated small-scale turbulence
data.

Within the limit of their battery autonomy, gliders can perform
several "flights" during every deployment and could, theoretically,
provide a continuos stream of data if organized into swarms (e.g.
for environmental monitoring of a limited region). Processing and
analysis of glider data is usually performed following "traditional"
techniques that require the intervention of a skilled oceanographer.
This disadvantage represents a strong limitation to the exploitation
of available data, restricting survey design and data analysis to
cruise/expedition level.

2 Data and Methods

Our dataset was produced by the "ITFM03" glider, during its 10t de-
ployment, initiated during R/V Meteor’s cruise M105 and retrieved
during cruise M106 in the Central Tropical Atlantic [3-5]. The
glider was equipped with 2 microstructure shear sensors mounted
to the MicroRider instrument, in order to measure dissipation rate
of turbulent kinetic energy. The dataset includes 341 variable-depth
glider flights, ranging from 3 to 920 meters. The data has a resolu-
tion of 1 meter and include the variables listed in Table 1 together
with geospatial metadata.

For our application, we consider every flight as a separate entity,
without trimming them to a common depth value. The flights can
be considered as a ordered collection of geospatially-referenced
multidimensional sequence. Given i = 1,2...n we can identify
(ui,v;, t;) as the geographical coordinates and timestamp of flight
fi, which consists in m data-points defined as follows:

i = by oxt)

where h = 3,4,...,m + 2 is the depth in meters and x* for k =
1,2...p are p depth-varying variables (like those listed in Table 1).
A graphical representation of a sample flight is illustrated in Figure

Table 1: Variables measured during the flights.

Variable Name Measuring Unit Label

Depth m dep
Dissipation rate (€) m?/s eps
Temperature °C t
Salinity s
Stability (N?) 52 n2
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Figure 2: Depth profiles of data recorded during flight 210.
The vertical axis measures the depth from the surface.

2. After interpolation, every flight is stored in a (m X p) tensor
and standardized. Log-scaling is also applied to € and N? before
training, using the x” = log(1 + x) transformation.

For our anomaly detection approach, we implement a LSTM-
based Variational Recurrent Autoencoder (VRAE) with CNN en-
hancement [6, 7]. The model is designed to learn a compressed
representation of the variable-length multivariate glider flights in a
low-dimensional latent space and then reconstruct the original se-
quences from this representation. The variational approach should
force the model to have a nicely structured latent space, where
topological analysis the model embeddings is possible [2].

Because 341 sequences is actually very few data for deep learning,
we need to strongly encourage the model to learn such a meaningful
latent space. This intention is practically achieved in the model
architecture also using a "smaller"” decoder compared to the encoder.
Therefore we use a small model, with most of the parameters in
the encoder for good feature extraction, a very small latent space
and a shallow decoder to prevent memorization. This forces strong
encoder embedding performance rather than reconstruction fitting.
Using a simpler decoder helps lowering the overall number of model
parameters, while maintaining the same encoder complexity, also
preventing overfitting.

The encoder consists of a convolutional preprocessing layer
(3x3 kernel) and a bidirectional LSTM (128 hidden units). The final
hidden states from both directions of the LSTM are concatenated
and passed through two separate linear layers to produce the pa-
rameters of the latent distribution. This process maps each input
profile to a 16-dimensional latent vector.

The decoder, made by a single-layer LSTM (48 hidden units),
aims to reconstruct the original sequence from a latent vector z,
sampled from the learned distribution. The output of the decoder
LSTM at each step is passed through a final linear layer to recon-
struct the original multivariate data point.

The model is then trained using the AdamW [10] optimizer
(learning rate: 3x10™#, weight decay: 5x107) for 10 epochs with
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a batch size of 32. We implement a beta-annealing schedule that
gradually increases the weight of the KL-divergence term in the loss
function to a maximum of 0.05, helping to avoid posterior collapse.
Teacher forcing with a decay schedule is also employed to stabilize
the decoder training.

To account for the different importance of variables, we apply
weighted reconstruction loss with higher weights for turbulence
measurements (we = 2.0).

After training, the VRAE should have learnt how to encode
normal patterns of the glider flights into a compact latent represen-
tation and reconstruct them accordingly. Anomalies are expected to
have a higher reconstruction error, as the model will be less effective
at compressing and decompressing unseen or rare patterns. Indeed,
the reconstruction loss can be used to identify possible anomalies:
given a certain threshold A, a flight f; is labelled as anomaly if

I1fi = filla > 2
where || - || 4 is a suitable reconstruction error function. In absence

of a validation set, the A can be tuned based on statistical analysis of
the reconstruction errors, using standard deviation rule or a target
percentage of anomaly in the data. Also empirical strategies can
be employed, like elbow-rule on the ordered reconstruction errors.
Note that the anomaly detection error function || - || can differ
form the training loss || - ||; using during model training. In our case,
since the training loss function changes across epochs due to the
beta-annealing schedule, we decided to employ MSE for anomaly
detection. This is done in order to provide a coherent detection rule
during the training, allowing for comparison and evaluation of the
model’s performances at different epochs.

The calculation of the MSE reconstruction error for flight f;
requires the computation of the (j X k) flight residuals matrix

Ep = (ejx)

as the matrix that contains the residuals for every predicted variable
at every depth point j = 1,2,...m of flight f; as follows:

ejk = (xlkj - fc{‘j)z
Given the along-depth sum of errors for variable k

m
Mk = Z €jk
=
we introduce the variable-specific anomaly score oy (f;) as the ratio
between the sums of error in variable k and the total sum of errors:

a(fi) = ;—gf

The value of ni(f;) € [0, 1] represents the "contribution” of
variable k to the detection of f; as anomaly and will be used to
interpret the results of the AD system. Since distribution of the
residuals eji can vary across variables (and can be different from a
Gaussian), the g (f;) can be scaled dividing for its median across
the i to help interpretation.

Since the primary focus of this work is evaluating AD systems ap-
plied to a real-world case study with unlabelled data, the results will
be discussed following three different approaches: field-knowledge
evaluation, statistical analysis of the system output and study of
the embeddings produced by the deep learning model.
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Figure 3: Ordered reconstruction errors obtained during the
anomaly detection process. The errors of the provided exam-
ples of normal ab abnormal data are highlighted.

3 Results and Discussion

The inference reconstruction errors (Figure 3) are used to detect the
abnormal sequences. We chose the value of A analysing the ordered
error curve in Figure 3, where a sharp knee is clearly visible, leading
to identification of approximately 10% of anomalies.

When analysed with oceanographical knowledge, the flights
recognised as positives (anomalies or novelties in the data) exhibit
patterns related to rare physical conditions or measuring errors
(Figures 5). The substantial difference within positive and negative
group can be also appreciated by their statistical analysis in Figure
4.

The downstream "eyeball inspection” and the statistical char-
acterization of the data is the bridge between our deep learning
approach and the traditional ones (manual labelling and statistical
AD). These passages are fundamental to initially assess the validity

=3 Normal [ Anomaly

5 10 15 20 25 30

3450 3475 35.00 35.25 3550 3575 36.00 36.25

n2

-3.07 -3.06 -3.05 -3.04 -3.03 -3.02

Figure 4: Statistical analysis of the detection results.
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Figure 5: Depth profile of flight 274, an example of anom-
aly/novelty detected by the system (depth under the surface
on vertical axis). The barplot in the bottom-figure represents
the o anomaly scores for the flight.

of any AD model, but are even more important for autoencoder-
based methods, due to the low interpretability of the inference
process. No AD system can be considered trustworthy if it does not
comply with this first evaluation stage, regardless of its technical
integrity.

Employing expert validation after inference allows to dramati-
cally reduce the effort required to the oceanographer in order to
check the data quality. It is possible to argue that manual labelling
of 341 sequence is possible in a reasonable time, yielding a pos-
sible validation or labelled training set. However, since this kind
of measurements are affected by multiple geospatial factors (like
seasonality, large and small scale systems, regional characteristics
etc.), the representativeness of the labelled sample is difficult to as-
sess, especially for anomalies and novelties. Due to this reason, our
approach follows the idea to leave the model decide on the "easy"
judgments (common data with low reconstruction error) and focus
expert attention to unusual data. This is even more important if
applied to real-time data processing during research cruises, where
scientists’ attention is a rare good that needs to be channelled into
many different tasks.

Of course, this approach does not solve the problem of hav-
ing undetected anomalies (false negatives) that could have a low
reconstruction error while still featuring uncommon data. If this
contingency is particularly relevant (e.g sensitivity of the system is
crucial for security reason) it is always possible to lower the value
of A to meet the requirements.

To further increase the interpretability of the results, we use the
variable-specific anomaly score ay (f;) to unveil the possible drivers
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of the detection of the flight as anomaly. In Figure 5 the anomaly
scores for flight 274 (Figure 5) are presented. As we can see, the
water profile exhibits a strong turbulent layer around 300 meters,
quite unusual in this regional context. This reflects in the high
value of ¢, since the anomaly in the variable e provokes more than
the 80% of the total reconstruction error for this flight. This metric
can help to understand what causes the detection of the anomalies,
however, its practical use is not always easy. The ambiguity is
caused by the difference in distribution of the variables’ residuals,
generating not consistent comparison between the anomaly scores,
especially between variables with different order of magnitude like
Dissipation rate/Stability and Temperature/Salinity.

To further evaluate the AD properties of our model, we analyse
the latent space. Since a validation set is not available in our case,
we tried to apply clustering to the embeddings, which can be seen
as an alternative way to double-check the AD performance. Our
idea is to observe how the detection-reconstruction error || - ||4
relates to the topology of the learned representation of the data, in
order to understand if the VRAE is able to capture the nature of
our AD problem.

To visualize the latent space, we reduce its dimensions using
t-SNE [18] and we use the reconstruction errors to color-map the
embeddings (Figure 6). It is possible to see a clear left-right gra-
dient in the representation of the latent space, however, since the
visualizations obtained with t-SNE can be misleading sometimes
[20], we try to investigate the real structure of the latent space via
clustering on its full dimensions.

K-Means with an arbitrary k on the latent space gives us the
results shown in Figure 7. Clearly this is not a perfect result, the
highest reconstruction loss flights are not all together in one cluster,

(O Top 10 recon-loss

(@] v(. S .~¢.~'.-?
%% .:?..,. ‘v'?s (]

@
.‘.
2
s
1.0 05 0.0 -05 -1.0

Normalized log-Reconstruction Error

Figure 6: t-SNE representation of the latent space, coloured
using a reconstruction error colour-map.
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Figure 7: t-SNE representation of the latent space clustering.

but they are on the outside edge of clusters, and we can even see
that the clusters are characterized by differences in the distribu-
tion of reconstruction error, as shown in Figure 8. This suggests
that the insights from Figure 6 are correct and the probabilistic
data-representation learnt by the VRAE reflects the concept of
"normality” that we are interested to.

The detection of high-reconstruction-error sequences showed
in Figure 3 leads to the identification of the geospatial anomalies
in the dataset (Figure 9). Their distribution across the glider path
does not seem random, featuring higher concentration of abnormal
data around deployment (north-east) and retrieval (south-west)
locations and also in another area along the course. While the
anomalies around the extremes of the track are easily explainable
by the ship’s influence and/or the manoeuvrers (especially the ones
directly before the retrieval), the profiles around 8°N can actually
contain novelties or less common data. Unfortunately, understand-
ing the cause of this anomaly "hotspot” is very complex, especially
without going deep into the interpretation of the physical condi-
tions of the area and perform an oceanographical study of the data.
An ocean front, a storm or a seamount could have caused the men-
tioned anomalies and an oceanographer would easily understand
the causal relationship if needed, however, we are interested in
providing results agnostic to field-knowledge.

To further analyse the output of the system at 8°N, we focus on
the a anomaly scores values along the path (Figure 10), in order to
get variable-specific insights about what is inducing the anomaly
detection. Of course, the a} are strongly correlated along k and
exhibit similar patters, however, given the high values of € and N?,
apparently the water turbulence is driving the detection results.
Naturally, these interpretation are based only on eyeball inspection
of the plots and do not take into account any statistical testing or
uncertainty estimate, nevertheless it can be interesting to spatially
visualize the reconstruction residuals. Additional research can be
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Figure 8: Boxplot of the reconstruction error across latent
space clusters shown in Figure 7.

made in the direction of improving the spatial robustness of this
approach, e.g. exploiting the points’ neighbourhood information
or applying more sophisticated methodologies such as Gaussian
processes.

4 Conclusion

We presented a deep-learning anomaly detection task on 341 multi-
variate sequences from an autonomous ocean glider and proposed
a practical evaluation process for real-world, unlabelled datasets.
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Figure 9: Geospatial visualization of the anomalies along the
glider path.
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Figure 10: Geospatial visualization of the normalized o anomaly scores.

The challenges in this case study include small-sample training,
lack of ground truth, threshold sensitivity and variable length data.

We implemented a compact VRAE with CNN preprocessing layer
and bidirectional LSTM encoder that yields reconstruction-based
flight and variable-level anomaly scores. We discussed the evalu-
ation of the anomaly detection system through field-knowledge
checks, statistical description of normal and anomalous sets and
topological analysis of the learned embeddings.

The results jointly indicate the latent space organizes profiles
by “normality”, providing some evidence about internal validity,
indicating that deep-learning anomaly detection can be successful
even in such challenging conditions. Of course, many aspects of the
problem still need an exhaustive answer: how to tune the system
without human intervention or semi-supervised workflows, how
to improve the latent representation of the anomalies and how to
interpret the result in relation to their geospatial context.

Moreover, further efforts are required to evaluate the system by
increasing the size and variety of the dataset, including measure-
ments from different regions and seasons. This would also enable a
discussion on the external validity of the results. Making the system
available to a growing number of oceanography researchers and
incorporating their feedback will, in turn, generate new insights
through its dissemination.
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