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Abstract
Anomaly detection plays a critical role in mobility systems by iden-
tifying unexpected behaviors that deviate from normative patterns.
It supports essential applications such as safety assurance, security
monitoring, and post-incident analysis. Despite its importance, ac-
quiring high-quality anomaly data remains a significant challenge
due to the rarity of anomalous events and the difficulty of accurate
annotation thereof. Due to this lack of ground truth data annota-
tions, prior research predominantly focuses on creating synthetic
anomalies by augmenting trajectories with anomalous behavior
such as excessive speed or sharp turns. But we argue that detecting
anomalies in a vacuum is not a useful task. What we really are
interested in is the cause that leads to anomalous behavior: The
cause for which the anomalous behavior is only the symptom. For
example, a traffic accident caused by an adverse health event may
be preceded by more subtle deviations in motions patterns such
as unusual speed, acceleration, or turning behavior. These subtle
deviations in motion patterns, often resulting from cognitive im-
pairments, environmental stressors, or degraded motor control, can
precede more severe events and offer valuable insights into human
behavior. But generating and finding causally grounded kinematic
anomalies has received limited attention.

In this paper, we address this gap by introducing a generative
modeling approach for simulating kinematic anomalies in ground-
based mobility contexts, with a primary focus on driving and ex-
tensibility to walking and bicycling. We analyze key factors and
configurations that influence the manifestation of anomalous be-
haviors and propose an algebraic framework to modularly generate
such behaviors. This approach facilitates synthetic data generation
for anomaly detection models and supports scenario design for
behavior analysis and safety evaluation.

CCS Concepts
• Computing methodologies→Modeling and simulation; •
Information systems → Spatial-temporal systems; • Applied
computing → Transportation.

Keywords
kinematic anomaly, anomaly detection, mobility, simulation, data
generation, causality

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License.
GeoAnomalies ’25, Minneapolis, MN, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2260-8/2025/11
https://doi.org/10.1145/3764914.3770591

ACM Reference Format:
Joon-Seok Kim and Andreas Züfle. 2025. Grounded Anomalies: Towards
Causally Grounded Kinematic AnomalyGeneration. In The 2ndACMSIGSPA-
TIAL InternationalWorkshop on Geospatial Anomaly Detection (GeoAnomalies
’25), November 3–6, 2025, Minneapolis, MN, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3764914.3770591

1 Motivation: Towards Explaining, Predicting,
and Prescribing Anomalies

Detecting anomalies, as an isolated task by itself, might not be
very useful. However, it can become highly valuable if the detected
anomalies can be used by additional inference tasks, such as: (1)
understanding what causes the anomalies and why they occur, (2)
predicting and preparing for the future occurrences of anomalies,
and (3) addressing the root causes of the anomalies to prescribe
changes in the real world to prevent future anomalies from occur-
ring. As an example, imagine traveling back in time year 1854, to
the Soho district (now part of the City of Westminster) in London,
UK. At that time, Soho was plagued by a severe anomaly: a cholera
outbreak. The outbreak was short-lived but very intense: over 500
people died in just about 10 days. Figure 1 shows the famous map
of John Snow [44] published in 1854, which pioneered the field of
spatial epidemiology. The map illustrates the road network of Soho
annotated with observed cholera cases. Now, imagine a similar out-
break occurring today, with modern sensing devices capturing the
location of movement of individuals. How could trajectory anomaly
detection be used to respond to a cholera outbreak in 2025?

Task 0: Anomaly Detection. By analyzing and mining human
trajectories, we should be able to detect individual trajectories
that exhibit changes in mobility behavior or stop moving entirely.
However, this knowledge, by itself in a vacuum, is not actionable.
Without knowing what the cause of the behavior change is, it could
simply be a stormy day causing people to stay indoors.

Task 1: Anomaly Explanation. Given the results from Task 0, we
can start investigating. Public health officials may be able to explain
that the change in mobility is due to cholera infection, and that
the complete cessation of movement in some trajectories is likely
due to death. With this explanation, the detected anomalies can be
used to inform first responders, who may then visit these locations
to check on potentially deceased individuals. While this result has
some utility (e.g., removing the bodies of individuals who lived
alone), this would not likely save any lives, since cholera is not
transmitted between people or from dead bodies.

Task 2: Anomaly Prediction. Given the results from Task 0 and
the explanation from Task 1, we can then use predictive modeling
to predict the number and locations of future individuals becoming
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Figure 1: John Snow’s 1854 map of the Soho Cholera Out-
break [44] (image public domain)

infected by and succumbing to cholera. When used for predictive
analytics, anomaly detection begins to have life-saving potential:
we may be able to evacuate areas with high predicted risk or protect
vulnerable populations.

Task 3: Anomaly Prescription. If we can detect anomalies (Task
0), explain their causes (Task 1), leverage this understanding for
predicting future anomalies (Task 2), the final and most impactful
task is to take actions to improve future outcomes: to prescribe
changes to the real world that prevent future anomalies. In the case
of John Snow, he correctly identified the Broad Street water pump as
the source of cholera infections, shut it down, and thereby stopped
the outbreak, saving lives and preventing further infections.

Following this example of the 1854 Cholera Outbreak, we argue
that anomaly detection is merely the task of identifying symptoms.
The real impact stems from understanding these symptoms and pre-
scribing interventions to address their underlying causes. However,
many existing works stop at Task 0, and structure their research in
a way that cannot progress beyond it: often by using data in which
anomalies are inserted arbitrarily, without any causal process.

For example, recent work in the machine learning community on
kinematic trajectory anomaly detection generates anomalies into
datasets arbitrarily. Many recent studies [15, 18, 28, 32, 50, 54, 56]
augment data by injecting so-called Detour Anomalies (where a tra-
jectory is altered to take a longer route than observed) and Switch
Anomalies (where segments of a trajectory are swapped with seg-
ments from another trajectory) at arbitrary times and locations. In
addition, the recent work Shao et al. [42] introduced so-called Time
Anomalies (where the speed of a trajectory segment is increased or
decreased) and Loop Anomalies (where reflexive detours from one
location back to itself are added). But all of these anomalies have
in common that they have no causal grounding: they are selected
arbitrarily. In the context of the Soho Cholera Outbreak, this is
like creating an anomalous trajectory dataset by taking an existing
(normal) trajectory dataset and selecting, arbitrarily at uniform

random, trajectories to become dead (i.e., no longer moving). While
such a dataset still allows to perform Task 0 (detecting the affected
trajectories), it is not possible to perform Task 1. That is because
the affected agents lack any causal grounding; their status is de-
termined by entropy, not by a meaningful cause. Attempting to
explain the cause of detected anomalies in such datasets is futile,
as no cause exists. Consequently, Task 2 (prediction) is also futile,
since the anomalies are selected uniformly at random, resulting
in unexplainable variance. By definition, such variance cannot be
explained or predicted. Without any causal basis for these inserted
anomalies, Task 3 of prescribing actions to prevent future anomalies,
is ill-defined.

2 Introduction: Towards Causally Grounded
Kinematic Anomalies

Understanding and modeling anomalous behaviors mobility sys-
tems is essential for advancing safety and robustness in autonomous
transportation systems [5] and has applications in monitoring el-
ders, and tracking the spread of infectious diseases [57]. Anomalies,
which are behaviors that deviate from typical patterns, can signal
potential safety hazards, cognitive impairments, or environmental
stressors. Kinematic anomalies manifest in the change of the me-
chanical motion of an object, such as anomalous (high/low) speed,
anomalous acceleration (deceleration), or anomalous (fast or slow
in a curve) changes of direction. Such kinematic anomalies may
have a multitude of causal reasons, such as a change of the en-
vironment (such as fog leading to many vehicles driving slower
than normal), a medical hazard (such as a cramp or a stroke of a
driver leading to loss of control), or emotional distress (such as a
verbal argument with a passenger leading to rapid acceleration).
The state-of-the-art detects kinematic anomalies in hindsight: To
determine the cause of a traffic accident.

Our vision is to advance kinematic anomaly detection to the
next level and to monitor live traffic. Detected anomalies can then
trigger real-time interventions, such as alerting the anomalous dri-
ver, warning nearby other drivers, or calling an ambulance even
before an accident happens. This may give first-responders a po-
tentially lifesaving head start. For example, an anomalous lack of
directional change while approaching a curve could prompt a dri-
ver’s assistant system to ask the driver, “Are you OK?”. The driver
might respond, “It’s suddenly so foggy!” or “H-h-he-he-help” with
the latter response automatically triggering a call for emergency
services.

Towards this vision, however, one of the major challenges is
the scarcity of high-quality, well-annotated anomaly data, particu-
larly for fine-grained kinematic deviations that often precede overt
failures. The goal of this vision paper is to chart a path forward
towards simulating kinematic anomalies and their causal reasons
to create large datasets of mobility trajectories with anomaly la-
bels [60]. Such a dataset would allow us to investigate what types
of anomalies can be detected rapidly enough to allow interven-
tions and whether such a system detection system may create an
overwhelming number of false positives.

To simulate kinematic anomalies, we acknowledge that driving
behavior is influenced by a complex interplay of cognitive, envi-
ronmental, demographic, and contextual factors. Human decision-
making in dynamic road environments is inherently variable and
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susceptible to both systematic biases (such as age-related percep-
tual decline) and spontaneous disruptions like emotional stress or
distraction. Despite growing research in driver behavior modeling,
current systems often treat anomalous behavior as an outlier, rather
than as a structured deviation that can be systematically analyzed
or generated. Recent studies have advanced our understanding of
specific driving impairments and the diversity of decision-making
strategies. For instance, age has been linked to both increased self-
regulation and variability in cognitive function [4, 21, 33]. Dis-
traction and cognitive workload have been shown to significantly
degrade driving performance [16, 27, 36], while emotional states
such as anger or stress are correlated with risky maneuvers and
reduced situational awareness [17, 19]. Environmental factors such
as weather conditions [11, 38], visibility [53], road signage [13], and
cultural differences [45] further complicate behavioral modeling.

In parallel, the emergence of intelligent transportation systems
has driven interest in data-driven approaches for anomaly detec-
tion [12, 39] and driver profiling [30, 46]. However, most existing
methods focus on classification or detection, limiting their utility
in proactive simulation, scenario generation, and model robustness
testing. More notably, the majority of research targets high-level
anomalous events (e.g., accidents or lane violations) while subtler
kinematic anomalies, which may serve as early warning signals,
remain underexplored.

In this paper, we address this gap by focusing on the simulation
and generation of fine-grained kinematic anomalies in ground mo-
bility contexts. We propose a generative modeling framework that
incorporates behavioral, demographic, and environmental decision-
making factors. Unlike prior work, our approach formalizes the
process of generating structured deviations from normative mo-
bility behavior, allowing for the synthesis of realistic anomalous
scenarios.

While this work emphasizes driving due to its complexity and
rich behavioral variability, the proposed framework is designed to
be modality-agnostic. Other ground-based mobility forms such as
bicycling andwalking also exhibit kinematic anomalies, particularly
under impaired or distracted conditions. By extending our model
to these modalities, we provide a broader foundation for studying
human mobility behavior in heterogeneous traffic environments.
Through this lens, we aim to contribute to the development of safer,
more adaptive mobility systems by providing a systematic method
for generating and analyzing kinematic anomalies. Our work fa-
cilitates not only improved anomaly detection and classification
but also supports the design of behaviorally diverse simulation
environments for training and evaluation.

3 Related Work
We survey the literature on kinematic anomalies and the various
factors that influence data-driven modeling of anomalous behaviors
inmobility, with particular attention to driving contexts. Our review
spans work on kinematic definitions, decision-making factors, and
recent advances in generative modeling and intelligent systems.

3.1 Kinematic Anomalies
Kinematic anomalies refer to deviations in motion patterns such
as speed, acceleration, and trajectory curvature that diverge from

expected behavior. Kennedy and Züfle [22] formalize this by intro-
ducing the concept of a “kinematic profile,” a personalized statistical
signature of motion. Deviations from this profile, which is mea-
sured through features like velocity distributions and acceleration
variance, are treated as indicators of anomalous behavior. Similarly,
Xiao et al. [55] analyze human movement in video sequences by
extracting explicit kinematic features such as stride length and limb
displacement. Their framework detects subtle motion anomalies
in real time, illustrating the utility of fine-grained kinematic moni-
toring in broader behavior analysis. Following these initial studies,
the machine learning community has recently started to tackle the
challenge of detecting kinematic anomalies: A very recently pub-
lished ACM KDD Paper [42] uses a Large Language Model-based
approach to detect kinematic anomalies such as fast turns or slow
driving.

It may be argued that a short-coming of these existing works
is that they specializes on very specific types of known and pre-
defined anomalies. Yet, the challenge of (unsupervised) outlier de-
tection in contrast to (supervised) classification is that there is no
training data and there are no examples of what an anomaly looks
like. Thus, it remains unclear how these existing works may gener-
alize to other anomalies than the ones they define. Our work aims at
filling this gap, by providing a framework that can generate broad
variety of kinematic anomalies would allow the anomaly detection
a more comprehensive evaluation of what they can detect.

3.2 Decision-Making Factors in Driving
Modeling anomalous driving behavior requires accounting for the
multifaceted nature of human decision-making, influenced by cog-
nitive, demographic, emotional, environmental, and contextual ele-
ments. We categorize the literature into four key themes.

Cognitive and Demographic Factors. Age, perception, and cogni-
tive capacity are foundational variables in driver behavior modeling.
Bernstein et al. [4] and Menze et al. [33] report that older drivers
often engage in more self-regulation, though executive function
is a stronger predictor of risky decisions. Joshi et al. [21] corrobo-
rate these findings using real-time vehicle data, showing divergent
control patterns across age groups. Zhang and Liu [58] highlight
the heterogeneity of crash risk among older drivers. Meanwhile,
Molnar et al. [34] and Watson-Brown et al. [52] identify inconsis-
tencies between perceived and actual driving safety, complicating
the modeling of subjective risk.

Distraction, Stress, and Emotional States. Distraction is a critical
contributor to unsafe behavior. Garcia-Constantino et al. [16] em-
ploy time-series analysis to quantify how cognitive distraction
affects vehicle control. EEG-based studies like Li et al. [27] of-
fer physiological validation for distraction detection. Nakano and
Chakraborty [7, 35, 36] demonstrate the potential of deep learning
for real-time detection of driver awareness based on telemetry data.

Emotional influences, particularly anger and stress, also impair
driving behavior. Brewer [6] and González-Iglesias et al. [17] asso-
ciate emotional dysregulation with higher traffic violations, with
gender-specific nuances. Hill and Boyle [19] link driver stress to
both maneuver complexity and road conditions. Singh and Kathuria
[43] provide a comprehensive review of these psychological impacts
in naturalistic driving studies.
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Behavior Modeling and Driver Profiling. Capturing personalized
driving styles is vital for both anomaly detection and simulation.
Tselentis and Papadimitriou [46] identify challenges in driver profil-
ing, emphasizing the need for context-aware modeling frameworks.
Liao et al. [30] provide an overview of datasets and methodologies
for personalization in driving behavior modeling, while their gen-
erative work on human mobility patterns [29] aligns with the goals
of anomaly synthesis in our study.

Deep learning has shown promise in this domain. Praharsha
and Poulose [39] achieve high accuracy in distraction classifica-
tion using attention-based architectures (CBAM-VGG16). Fan et
al. [12] use hybrid models to detect anomalous lane changes, high-
lighting the capacity of neural models to capture subtle behavioral
deviations.

Multimodal and Intelligent Systems. Recent advances integrate
behavioral analysis with multimodal sensing and contextual aware-
ness. Wang et al. [51] propose AccidentGPT, a large multimodal
model leveraging vehicle-to-everything (V2X) data for accident pre-
diction. Varnosfaderani et al. [47] review unobtrusive biosensing
systems for real-time cognitive and emotional monitoring. Amiri
et al. [3] emphasize autonomous learning strategies for modeling
complex behavioral interactions in interconnected environments.

3.3 Environmental and Contextual Factors
Environmental and infrastructure variables significantly shape
driving behavior and may induce or exacerbate anomalies. Nu-
merous studies have demonstrated that adverse weather, such
as fog or ice, leads to impaired maneuvering and elevated crash
risk [8, 11, 37, 38, 41]. Road infrastructure quality, including signage,
markings, and pavement, directly influences cognitive load and dri-
ver gaze behavior [13, 26]. Visibility, gender, and cultural norms
further modulate the impact of environmental factors, as shown
by Wei et al. [53] and Taourarti et al. [45]. To summarize, while
current research has made strides in detection and profiling, limited
attention has been paid to the structured generation of fine-grained
kinematic anomalies. This motivates the present study, which seeks
to formalize and simulate such behaviors, offering a foundation for
more realistic testing, analysis, and training of intelligent mobility
systems.

4 Kinematic Anomalies
An anomaly is defined as a deviation from expected or normal
behavior [14]. In the context of mobility, the definition of “normal”
is inherently subjective and depends on modeling assumptions
and context. This work focuses specifically on characterizing such
behavior through a kinematic lens, centering on measurable motion
variables.

Our core research question is: How can we systematically gen-
erate kinematic anomalies within a simulation environment using
observable features, while grounding them in plausible, semantically
meaningful deviations?

In this paper, we restrict our focus to ground-based mobile enti-
ties, such as pedestrians and vehicles, and exclude other transporta-
tion modalities like aerial or aquatic systems for simplicity. Table 1
outlines the scope and boundaries of this study. Human mobility
anomalies in patterns of life [2] or gait [55] models are not con-
sidered in this study. Within simulations, sensor errors (e.g., GPS

Table 1: Scope of this study

Type Scope Out of Scope
Mode Pedestrian, Ground vehicle Watercraft, Aerial vehicle
Model Kinematic behavior Gait, Patterns of life
Error Sensor errors within

simulation
Observation noise in
recorded outputs

inaccuracies) are considered plausible and relevant for autonomous
vehicle decision-making. However, any assumptions regarding ob-
servation errors in output data generated externally are beyond the
scope of this study. This ensures that users can access ground truth
data, including accurate kinematic variables.

4.1 Control-Theoretic View of Mobility
We adopt a control-theoretic perspective to structure the compo-
nents involved in mobility. In classical control systems, behavior is
governed by three core elements: sensors, controllers, and actuators.
This abstraction is foundational in modern vehicle dynamics and
autonomous mobility design [31, 40]. Table 2 illustrates how these
components map to the mobility domain.

A sensor may refer to human vision or machine perception
systems such as cameras, LiDAR, radar, and GPS, which observe the
surrounding environment. The controller represents the decision-
making unit and this could be a human driver, an autonomous
agent, or an AI assistant responsible for interpreting sensor data
and generating appropriate actions. The actuator is the physical
mechanism that executes these actions, such as throttle, brake, or
steering systems–or, in the case of walking, human limbs.

Mobility behavior can be viewed as the process of minimizing
deviation from a desired reference state, such as target speed, head-
ing, or lane position, while responding to external disturbances like
adverse weather, road conditions, or dynamic traffic contexts.

Table 2: Mapping between control theory and mobility

Control Theory Mobility Analogue
Sensor Human vision, camera, LiDAR, GPS, radar
Controller Human driver, autonomous agent, AI assis-

tant
Reference State Position, velocity, heading, relative distance
Actuator Throttle, brake, steering, limbs
Disturbance Weather, road condition, traffic context

4.2 Modeling Kinematic Anomalies
We model the behavior of a mobile agent using a sequence of
observable state variables. These variables are categorized into two
primary types:
• Core kinematic variables: Directly measurable motion quan-
tities such as position (𝑝), velocity (𝑣), acceleration (𝑎), and jerk
( 𝑗 ). These are typically represented as vectors in 2D or 3D space,
capturing both magnitude and direction of movement.

• Contextual variables: Additional descriptors that enrich behav-
ioral interpretation, including heading (𝜃 ), angular velocity (𝜔),
road geometry, proximity to other agents, and interactions.
We denote the complete observable state at each timestep as 𝑋𝑡 ,

where 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑇 } is the sequence of observations over
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Table 3: Summary of Kinematic Anomaly Categories and Modal Examples

Category Modality Example Anomalies

Core Kinematic

Vehicle Off-lane driving, sudden stops, harsh braking, throttle-brake oscillation
Pedestrian Unexpected stops in crosswalks, sprinting in crowded zones
Cyclist High-speed riding in pedestrian zones, sudden deceleration
Robot Jerky movement in corridors, delayed acceleration or stopping

Contextual

Vehicle Illegal U-turns, failure to yield, wrong-way driving
Pedestrian Ignoring traffic lights, entering vehicle lanes
Cyclist Riding against traffic on one-way roads, failure to stop at signs
Robot Entering human-only areas, navigating against flow in shared spaces

Compound (Multi-factor)

Vehicle Driving in reverse on active road (heading + road semantics)
Pedestrian Diagonal sprint across intersection on red (velocity + violation)
Cyclist Speeding through crowded intersection against signal
Robot Backward entry into a congested elevator (heading + proximity + context)

time. These observations are assumed to be available from sensors
or simulation outputs.

To support both generative modeling and detection, we concep-
tually distinguish between:

• Internal (latent) state 𝑍 : Includes unobservable or inferred
factors such as intentions, attention, control policies, and hidden
environmental parameters.

• Observable state 𝑋 : Includes measurable motion and context
variables derived from sensor data or simulation.

We note that anomaly detection systems operate over 𝑋 , while
anomaly generation in simulation may additionally utilize 𝑍 to
simulate plausible but unexpected behaviors.

We define a kinematic anomaly probabilistically as follows:

Definition 1 (Kinematic Anomaly). A kinematic anomaly is a
statistically significant deviation from expected patterns over ob-
servable state variables:

𝑃 (𝑌 = 1 | 𝑋1:𝑇 ) ≫ Enormal [𝑃 (𝑌 = 1 | 𝑋1:𝑇 )],

where 𝑌 = 1 indicates an anomalous sequence, 𝑋1:𝑇 is the sequence
of observed states over time, and Enormal [·] denotes the expected
anomaly probability under a distribution of normal behavior.

This definition enables a flexible, data-driven approach to anom-
aly detection. Instead of relying on static thresholds (e.g., “velocity
> 80 mph”), it allows probabilistic models to identify rare or unex-
pected patterns within high-dimensional behavior distributions.

In practice, a dynamic detection criterion may be used:

𝑃 (𝑌 = 1 | 𝑋1:𝑇 ) > Enormal [𝑃 (𝑌 = 1 | 𝑋1:𝑇 )] + 𝑘𝜎,

where 𝑘 is a tunable sensitivity parameter, and 𝜎 is the standard
deviation of the anomaly score under the normal distribution.

While derived features such as time-to-collision or relative speed
can enhance detection, they are not strictly required by this for-
malism, which focuses on deviations from learned distributions in
observable states.

4.3 Kinematic Anomaly Categories and
Examples

We categorize kinematic anomalies into three main types: core
kinematic anomalies, which involve deviations in directly mea-
surable motion variables (e.g., position, velocity, acceleration, jerk);
contextual anomalies, which arise from violations of semantic
rules, traffic norms, or environmental interactions; and compound
anomalies, which result from joint deviations across multiple vari-
ables or factors. These categories, outlined in Table 3, apply across
various modalities including vehicles, pedestrians, cyclists, and
robots.

Core Kinematic Anomalies. These anomalies arise from devia-
tions in low-level motion dynamics. Since they involve measurable
signals like position, speed, and acceleration, they are well-suited
for detection using sensor-based systems and signal processing
techniques. Temporal consistency is important: a sudden velocity
spike might be benign unless it persists or co-occurs with other
anomalies over time.

Contextual Anomalies. These are defined relative to scene seman-
tics and interaction norms. Their detection requires reasoning over
spatial, temporal, and social context (e.g., map data, nearby agent
behavior, or traffic rules). For example, a pedestrian jaywalking
during a red light may only be anomalous when contextualized
within the current phase of the signal and presence of traffic.

Compound Anomalies. These combine deviations across both
core and contextual dimensions, typically manifesting over ex-
tended time windows. Their detection benefits from sequence mod-
els (e.g., RNNs, Transformers) that can capture long-term dependen-
cies. Compound anomalies often indicate higher risk levels, as they
reflect deeper failures in decision-making, perception, or intent
alignment.

Temporal Implications. Temporal modeling plays a key role in
anomaly detection. Anomalies may:
• Emerge gradually: e.g., drift off the lane over time.
• Occur abruptly: e.g., sudden stop in a fast-moving lane.
• Be transient or persistent: transient anomaliesmay self-correct;
persistent ones indicate systematic failure.
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Figure 2: A schematic of the generative framework for kinematic anomalies.

For effective detection, systems must not only assess the instan-
taneous state but also reason over temporal dynamics, historical
trends, and predictive uncertainty.

Detection Implications. Different anomaly categories require dif-
ferent detection approaches:
• Core anomalies can be flagged using statistical modeling, thresh-
olding, or trajectory forecasting [22].

• Contextual anomalies require fusion of map knowledge, intent
inference, and interaction modeling [20].

• Compound anomalies benefit from hybrid methods that com-
bine rule-based priors, simulation-based expectation, and deep
sequence modeling [9, 49].
Ultimately, the design of detection models should align with the

anomaly types and the observability of variables involved.

5 Generative Framework for Kinematic
Anomalies

We design a generative model to simulate anomalies through sys-
tematic manipulation of internal states and external conditions.
Figure 2 shows a schematic of the generative framework for kine-
matic anomalies. At the core of the model is a driver module,
which can represent a human, an autonomous agent, or a hybrid AI
system. The driver comprises sensors, operators, and a controller,
and interacts with a set of decision-making factors, grouped as
follows:
• Sensory: Inputs that form the driver’s perception of the en-
vironment, including visual, auditory, and other sensor-based
channels. For humans, this includes vision and proprioception;
for machines, it includes cameras, LiDAR, radar, and GPS.

• Attentional:Mechanisms that determine which information is
prioritized. In humans, this corresponds to cognitive focus; in AI

systems, it maps to algorithmic attention mechanisms or sensor
fusion strategies.

• Learning: Acquired knowledge or experience that influences
decision-making. For humans, this includes prior driving expe-
rience and habitual behavior. For AI, it encompasses predictive
models, skill policies, and learned representations.

• Reactive: Fast, often reflexive responses to stimuli, such as brak-
ing when an object suddenly appears.

• Social: Influences from external norms and policies, such as traf-
fic rules, demographic trends, or culturally informed behaviors.

• Environmental: External contextual factors including road in-
frastructure, surrounding obstacles, pedestrian behavior, and
weather conditions.

For modeling purposes, we distinguish between internal factors
(e.g., sensory input, attention, learning, reactivity, social) and ex-
ternal disturbances (e.g., environmental conditions). Although the
boundary is not always clearly defined (e.g., social norms may be
both internalized and externally imposed), we use this distinction
to guide the structure of our generative model. Each factor can be
perturbed independently or jointly to simulate realistic anomaly sce-
narios. For instance, occluded sensors simulate perception failures;
altered attention models distraction; and changes in environment
(e.g., rain, congestion) induce external disturbances.

These factors serve as inputs to two key components governing
the driver’s behavior, each with a distinct role. In this framework,
an operator is responsible for making high-level decisions, such as
setting a reference state or target (cf. Table 2), based on policy and
context. For instance, a driver may prefer different following dis-
tances depending on their experience or familiarity with a specific
road. We define a policy as the mechanism that sets such reference
states.
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The controller, on the other hand, determines how to achieve
the reference state based on real-time sensory inputs. It manages
low-level actuation commands such as throttle, braking, and steer-
ing. The resulting control outputs, along with external environmen-
tal influences, cause changes in the system’s state (e.g., a vehicle or
pedestrian). These dynamics produce the observable state, which
includes core kinematic and contextual variables.

5.1 Anomaly Generation Requirements
We expect simulations that supports both stochastic and rule-based
generation of anomalies. Design objectives include:
(1) Type diversity:Coverage of different kinematic anomaly classes.
(2) Realism: Behavioral consistency before and after anomalies.
(3) Controllability: Fine-grained control over perturbation pa-

rameters.
Simulation outputs contain full observability of 𝑍 and 𝑋 and are
annotated with ground-truth anomaly labels. Detection models
trained on these outputs rely only on observable features, support-
ing realistic deployment scenarios.

5.2 Generative Model Algebra
To formalize the systematic generation of kinematic anomalies, we
introduce a concise algebraic framework that captures how various
internal and external factors contribute to anomalous behavior in
generative simulations. This abstraction allows anomaly configura-
tions to be expressed as composable and modular elements.

Let:
• 𝑜 ∈ O: a mobile object (e.g., pedestrian, vehicle, robot),
• 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛}: the set of generative factors influencing be-
havior (e.g., sensory, attentional, environmental),

• C = {𝑐1, 𝑐2, . . . , 𝑐𝑛}: the configuration space, where each 𝑐𝑖 corre-
sponds to a specific instantiation or perturbation of factor 𝑓𝑖 ∈ 𝐹 ,

• Γ(𝑜, 𝐹, C): a causally grounded anomaly generator producing a
trajectory for object 𝑜 given factors 𝐹 and configurations C.
Each factor 𝑓𝑖 ∈ 𝐹 represents a domain of influence over an

agent’s behavior, such as perception (e.g., sensory accuracy), cog-
nitive state (e.g., attention, stress), or environment (e.g., weather,
road conditions). The configuration 𝑐𝑖 ∈ C defines how that factor
is instantiated or perturbed within the simulation.

Definition 2 (Generative Process). The generative process pro-
ducing an anomalous trajectory is defined as:

𝑋 ∗
1:𝑇 = Γ(𝑜, 𝐹 ′, C′),

where 𝐹 ′ ⊆ 𝐹 is the subset of factors selected to induce anomaly, and
C′ are their specific configurations (e.g., occluded vision, slippery
road, distracted attention).

Example 1 (Sensory Impairment in Human Driver). Let

𝑓 human
sensory ∈ 𝐹

denote the sensory factor for a human driver. A configuration
modeling sensory impairment may be:

𝑐occlusion = “reduced field of view”.

An anomaly induced by visual occlusion is then represented as:

𝑋 ∗ = Γ
(
𝑜, {𝑓 human

sensory}, {𝑐occlusion}
)
.

5.3 Algebraic Properties
Let (Γ, ⊕) define an algebra over causal effects with a binary compo-
sition operator ⊕. An anomaly algebra should satisfy the following
desirable properties:
• Commutativity: The order of composition of grounded anom-
alies does not matter, that is:

Γ(𝑜, 𝐹1, C1) ⊕ Γ(𝑜, 𝐹2, C2) = Γ(𝑜, 𝐹2, C2) ⊕ Γ(𝑜, 𝐹1, C1) .
This property ensures that two anomalies resulting from the
same causal effects, applied in different orders, yield the same
outcome. For example, the anomaly created by applying causal
factors 𝐹1 = 𝑓attention with configuration 𝐶1 = {distracted}, and
𝐹2 = 𝑓environment with𝐶2 = {wet road}, should result in the same
anomaly when applied to the same agent, regardless of order.

• Associativity: The grouping of causal effects does not affect the
resulting anomaly:

(Γ(𝑜, 𝐹1, C1) ⊕ Γ(𝑜, 𝐹2, C2)) ⊕ Γ(𝑜, 𝐹3, C3)
= Γ(𝑜, 𝐹1, C1) ⊕ (Γ(𝑜, 𝐹2, C2) ⊕ Γ(𝑜, 𝐹3, C3)) .

This allows multi-factor anomalies to be constructed incremen-
tally.

• Idempotence: Applying the same configuration to the same
agent more than once should not alter the anomaly:

Γ(𝑜, 𝐹1, C1) ⊕ Γ(𝑜, 𝐹1, C1) = Γ(𝑜, 𝐹1, C1) .
This property ensures that agents are not affected multiply by the
same causal effect. For example, if an agent 𝑜 is already driving
on a wet road using Γ(𝑜, 𝑓environment,wet road}) caused by rain,
then additional causal effect that causes the road to be wet due
to a malfunctioning garden irrigation system using the same
Γ(𝑜, 𝑓environment,wet road}) should not affect the behavior of 𝑜 .

• Composability: Anomalies induced by separate factor sets can
be combined, e.g.,

Γ(𝑜, 𝐹1, C1) ⊕ Γ(𝑜, 𝐹2, C2) =⇒ Γ(𝑜, 𝐹1 ∪ 𝐹2, C1 ∪ C2) .
This property allows multiple factors to be combined to create
compound anomalies. For example,

𝐹 ′ = {𝑓attention, 𝑓environment}, C′ = {distracted,wet road}
yields an anomaly resulting from both driver distraction and
adverse road conditions. Note that the above relation is only one
way due to the set union operator. For example, knowing that
the compound anomaly Γ1 ⊕ Γ2 causes a wet road does not imply
whether Γ1, Γ2, or both individually cause the wet road condition.

• Identity: Let 𝑒 = 𝐴(𝑜, ∅, ∅) represent the identity element (i.e.,
no causal effect), then:

Γ(𝑜, 𝐹, C) ⊕ 𝑒 = Γ(𝑜, 𝐹, C).
This property ensures that any observable effect is grounded in a
causal factor. In other words, adding no causal effect should not
change the resulting observable anomaly (or lack thereof).

This is a non-exhaustive list of algebraic properties that may (or
may not be) desirable for an (envisioned) algebra over causal effects.
But the main take-away from this section is that by defining causal
effects as an algebra, we can defined operators to combine anomalies
caused by one type of causal effects by anomalies caused by another
type of causal effects to create complex compound anomalies that
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could be used in a simulation to create emerging anomalies that
are not arbitrarily inserted into a simulation or dataset, but instead,
emerge from causal factors and their composition.

Semantic Typing. Although the term ‘semantic typing’ is not
always used explicitly, the underlying idea of assigning meaningful
categories to influencing factors appears in several prior works. For
instance, context-dependent anomaly detection frameworks utilize
knowledge graph embeddings to encode the semantic context of
factors and their relationships [48]. This approach enables richer
reasoning about the origins and propagation of anomalies. Simi-
larly, methods based on temporal, spatial, and semantic analysis of
driving behavior treat behavioral deviations as transitions between
semantically meaningful states [59]. This perspective supports both
interpretability and structured reconstruction of anomalies.

Inspired by these approaches, we formalize semantic typing in
our generative framework through a mapping

𝜏 (𝑓𝑖 ) ∈ {driver-internal, vehicle-control, environmental, . . .},
where 𝜏 (·) is is a type function assigning each factor 𝑓𝑖 a semantic
label that reflects its functional role within themobility system. This
categorization helps clarify how anomalies originate from different
sources, such as human cognitive states, vehicle control dynamics,
or environmental conditions. It also facilitates tracing how such
anomalies influence various layers of behavior, from perception
through planning to actuation.

This algebraic framework establishes a principled foundation
for generating, categorizing, and experimenting with anomalies in
simulation environments, supporting controlled benchmarking and
analysis.

5.4 Examples of Generative Model Algebra
To illustrate the application of this algebraic framework in gen-
erating kinematic anomalies, we present representative examples
aligned with the categories summarized in Table 3.
Example 2 (Harsh Braking in Autonomous Vehicle). Consider the
acceleration factor:

𝑓 vehicleacceleration ∈ 𝐹,

and a configuration specifying an abrupt deceleration:

𝑐harsh = “high negative acceleration spike”.

The anomaly representing harsh braking is generated by:

𝑋 ∗ = Γ
(
𝑜, {𝑓 vehicleacceleration}, {𝑐harsh}

)
,

a core kinematic anomaly affecting acceleration.

Example 3 (Illegal U-turn Combining Context and Kinematics).
Let

𝑓road ∈ 𝐹, 𝑓 vehicleheading ∈ 𝐹

represent road semantics and heading direction factors, respectively.
The configurations can be:

𝑐no_uturn =“road segment disallowing U-turns”,
𝑐reverse_heading =“heading change of 180°”.

The combined anomaly of performing an illegal U-turn is:

𝑋 ∗ = Γ
(
𝑜, {𝑓road, 𝑓 vehicleheading}, {𝑐no_uturn, 𝑐reverse_heading}

)
,

a compound anomaly involving both contextual and core kinematic
variables.

Example 4 (Unexpected Pedestrian Sprint). Define

𝑓
pedestrian
velocity ∈ 𝐹, 𝑓traffic_signal ∈ 𝐹,

with configurations:

𝑐high_speed =“velocity exceeding normal pedestrian range”,
𝑐red_light =“crossing against red signal”.

This anomaly models a pedestrian sprinting across an intersection
during a red light:

𝑋 ∗ = Γ
(
𝑜, {𝑓 pedestrianvelocity , 𝑓traffic_signal}, {𝑐high_speed, 𝑐red_light}

)
.

Such compound anomalies capture complex behaviors combining
kinematic and contextual deviations.

6 Conclusion
In this vision paper, we introduced the idea of a generative modeling
framework for simulating kinematic anomalies in mobility contexts.
By adopting a control-theoretic abstraction, we propose to map core
behavioral components (including sensors, controllers, actuators,
and disturbances) onto elements of vehicle and pedestrian dynamics.
Building on this foundation, we propose an algebraic framework
that formalizes how internal and external factors, such as attention,
perception, and environmental conditions, can be composed to
generate structured anomalous behaviors.

Unlike traditional anomaly detection approaches that treat anom-
alies as unstructured or rare outliers, our framework enables the
deliberate synthesis of fine-grained, interpretable anomaly sce-
narios. This capability opens new directions for training robust
autonomous systems, validating edge-case handling in simulators,
and advancing driver assistance technologies through targeted be-
havioral perturbations.

While this paper focuses on the conceptual and formal underpin-
nings of the generative framework, we leave implementation and
evaluation to future work. Our next step is to develop a simulation
platform grounded in the proposed anomaly algebra. This plat-
form will support parameterized anomaly injection across various
modalities [23], including driving, cycling, and walking, enabling re-
searchers to benchmark detection methods, assess control policies,
and explore human-AI interaction in safety-critical settings.

One key challenge lies in modeling the composition of anomalies
within simulations, particularly in understanding how different
factors interact, whether additively, non-linearly, or in a context-
dependent manner. For instance, how much lateral drift might
result when a distracted driver encounters a wet road surface?
While the proposed generative framework encapsulates the notion
of composability, its practical implementation could be integrated
with traffic simulation platforms such as SUMO [25] and CARLA
[10], enabling realistic scenario generation and evaluation.

Although the primary focus is on generative modeling of kine-
matic anomalies, we plan to integrate this framework with agent-
based patterns-of-life models [1, 24] to ensure behavioral grounding.
Ultimately, we envision this framework as a testbed for principled,
reproducible anomaly research across domains such as intelligent
transportation, autonomous navigation, and human-centered mo-
bility systems.
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