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Abstract

Given a dataset of moving object trajectories, a domain-specific
study area, and a user-defined error threshold, we aim to identify
anomalous trajectories indicative of possible GPS spoofing (e.g.,
broadcasting fake signals). The problem is societally important to
curb illegal activities such as unauthorized fishing and illicit oil
transfers in international waters. The problem is challenging due
to advances in Al-generated deep fakes (e.g., additive noise, fake
trajectories) and the scarcity of labeled samples for ground-truth
verification. Current state-of-the-art methods ignore fine-scale spa-
tiotemporal dependencies and prior physical knowledge, resulting
in lower accuracy. In this paper, we propose a physics-informed
anomaly detection framework based on an encoder-decoder archi-
tecture that incorporates kinematic constraints to identify trajecto-
ries that violate physical laws. Experimental results on maritime
and urban domains demonstrate that the proposed approach yields
higher solution quality and lower estimation error for anomaly
detection and trajectory reconstruction tasks, respectively.
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1 Introduction

Given a moving object trajectory dataset, a domain-specific study
area (e.g., road network, maritime waters), and a user-defined recon-
struction threshold (1), our aim is to identify anomalous trajectories
indicative of possible GPS spoofing (e.g., broadcasting fake trajec-
tory signals). A moving object is defined as an entity that displays
realistic motion characteristics in urban (such as road networks)
and maritime mobility datasets. GPS spoofing is a type of anoma-
lous behavior that occurs when an object intentionally broadcasts
spurious or fake locations to conceal its movements for potential
illicit activities and deceive the end-user. These false signals do not
conform to the historical mobility patterns of nearby entities and
they are not physically feasible, resulting in higher reconstruction
errors ¢ (i.e., divergence between the generated and original input
trajectories) as compared to the normal pattern (e.g., the shortest
or most frequent path). For instance, Figure 1 (a) shows trajecto-
ries 71, 72, and 75 where each point within a trajectory 7; has a
kinematic state [Av, t] where Av denotes acceleration (or change
in velocity v) and t as timestamp (where ¢ € [0, .., 5]). Figure 1 (b)
shows that trajectory 7; exhibits significantly different mobility
behavior, followed by 73 and 77 in terms of their spatial deviation
from the shortest path. Hence, 73’s behavior is flagged as anomalous
with a reconstruction error of ¢;, exceeding the threshold of 0.3. In
contrast, given the same threshold, Figure 1 (c) shows 7; and 75 as
anomalous because we are considered their kinematical state [Av,
t] based additional physical attributes (i.e., acceleration or change
in velocity) at each timestamp ¢ along with spatial-deviation from
the shortest path, resulting in more accurate reconstruction error
& = 0.7 and &, = 0.4 respectively. In this paper, we investigate a
physics-informed anomaly detection framework based on a physics-
informed diffusion probabilistic model (Pi-DPM), which effectively
analyzes spatiotemporal and physical characteristics that violate
laws of physics.

GPS spoofing has significant implications for homeland security,
public health and safety, enforcement of UN sanctions, and maritime
regulations. An example of anomalous activity that put the public
at risk occurred in 2020, when a Berlin artist used 99 phones to
manipulate Google Maps and reroute traffic from a residential street
[30]. In another case [71], an oil tanker named Cathay Phoenix
was reported to be broadcasting fake location signals near the
Sea of Japan, suggesting it was making frequent abrupt changes
in direction (or bearing) and moving in an anticlockwise pattern.
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Figure 1: An illustration example of a problem statement with input and output comparison for both related work and the
proposed approach (Best in Color).

Typically, the bearing change distribution for tankers follows a
straight-line path with almost no variation (i.e., the green box). In
contrast, the Cathay Phoenix exhibited sudden directional shifts
and a high rate of turns, as shown by its bearing change distribution
(i.e., the red box). Such a high rate of turns is not physically plausible
for a vessel as large as an oil tanker to execute within a short period
of time in a confined geographic region [71]. It was later revealed
by nearby cargo vessels that the ship’s actual location at the time
was a Russian port, where it was loading oil for shipment to China
to evade U.S. sanctions.

Frequency Distribution of Bearing Changes

Legend
[0 Normal Behavior
[l Spoofed Behavior

B o

Bearing Change (degrees)

Figure 2: An oil tanker, Cathay Phoenix, whose bearing
distribution (red box) is significantly different from normal
behavior (green box) (Best in Color).

Challenges: Identifying anomalous trajectories arising from pos-
sible GPS spoofing is challenging due to advances in Al-generated
deep fakes (e.g., additive noise, fake trajectories). Moreover, the
scarcity of ground-truth data on known GPS spoofing behavior hin-
ders the development of accurate and physically plausible anomaly
detection methods. Finally, machine learning models provide sta-
tistical estimations and fail to integrate real physical constraints
when generating trajectories. This limits their interpretability and
explainability, making it hard for human analysts to manually in-
spect them for illegal activities [71].

Related Work: Traditional literature on anomaly detection meth-
ods for trajectories leverages spatial and temporal feature repre-
sentations for classifying anomalous trajectories. However, these
methods are limited to capturing anomalous trajectories at a coarser
level for a given time interval (e.g., aggregated by asynchronous
routes or trips) [9, 85], which restricts their ability to learn real-time

spatiotemporal dependencies at a finer granularity and to inves-
tigate complex behavioral mobility patterns. Current data-driven
approaches [22, 28, 43, 48, 52, 74] do consider such synchronous
spatial or temporal characteristics while capturing trajectory anom-
alies. However, none of them account for physics-based parameters
(e.g., rate of turn, acceleration), making it challenging to investigate
real-time mobility dynamics, which are crucial for detecting rare
but significant anomalous behaviors such as the GPS spoofing [71].
In this work, we propose a diffusion-based probabilistic model that
incorporates real-time spatiotemporal dependencies and physics-
based parameters [56] to enforce kinematic constraints at a finer
granularity. This ensures physically feasible behaviors.
Our contributions are as follows:

e We introduce a physics-informed anomaly detection frame-
work that builds upon an encoder-decoder architecture for
more accurate error reconstruction estimation, followed by
threshold-based anomaly detection.

e We propose a physics-informed diffusion probabilistic model
(Pi-DPM) as an encoder-decoder architecture that leverages
fine-scale spatiotemporal dependencies with physical con-
straints to more accurately estimate maneuvers and complex
motion dynamics in the sampling phase.

e Thorough extensive experiments on real-world trajectory
datasets, we demonstrate that Pi-DPM outperforms state-
of-the-art methods in both trajectory reconstruction and
anomaly detection.

GeoAnomalies Workshop Relevance: This work is relevant to
the GeoAnomalies workshop for the following reasons:

e It builds on recent advances in geo-anomaly detection, in-
cluding synthetic mobility datasets with injected anomalies
[2, 70], context-aware detection [34], and LLM-based trajec-
tory pattern mining [88].

e While these approaches improve robustness and consider
contextual information (e.g., POIs), they often overlook en-
forcement of physics at a finer granularity [36].

o The proposed framework aligns with the workshop’s focus
on geo-spatial anomaly detection using generative models.

Scope: This paper only considers one type of geometric spoofing
behavior (i.e., circular based on [71]). It does not address other
spoofing behavior prevalent in maritime and urban settings (e.g.,
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record and reply, false AIS identification, etc.). The paper also does
not consider spatial and temporal attention separately to identify
which one plays a more significant role in the proposed work.
Finally, the paper does not consider real-world incidents of the
spoofing [71], which remains a direction for future work.

Organization: The rest of the paper is organized as follows.
Section 2 introduces key concepts and formally defines the problem.
Section 3 describes the proposed model in detail. In Section 4, we
evaluate the proposed model experimentally based on anomaly
detection, trajectory reconstruction, and sensitivity analysis. A
detailed review of related work is given in Section 5. Finally, Section
6 concludes the paper and outlines future work.

2 Problem Formulation

2.1 Notations and Definitions

Definition 2.1. A trajectory 7 is a collection of location traces
generated by a moving object (e.g., vehicle, ship), typically repre-
sented as a chronologically ordered sequence of points where each
point consists of object’s coordinates (lat, long) and its kinematic
state at time ¢. For instance, in Figure 1, the trajectories 77, 73, and 73
consist of ordered location traces and collection of such trajectories
forms a trajectory dataset: 77, 7z, . . ., 78 where N is the number of
temporal observations in the trajectory.

Definition 2.2. The kinematic state of each point can be derived
via computing travel-time, speed, angle, from consecutive points
€ [lony, laty, vy, 8y, ay, St]T, where v; is velocity, a; is acceleration
(equivalent to Av in Figure 1), §; is bearing and § as rate of turn.

Definition 2.3. An anomalous trajectory deviates from typ-
ical patterns in aspects such as position, orientation, and speed.
On roadways, such deviations often arise from violations of traffic
rules or physical driving constraints, such as sudden or extreme
changes in movement due to complex or unpredictable conditions.
In maritime settings, common examples include drifting off, pro-
longed stops, or sudden changes in a vessel’s bearing. Due to data
scarcity, this paper synthetically generated anomalies by injecting
normal trajectories with noise characteristics, including sudden
acceleration, long-term stops, frequent lane shifting, side-to-side
swinging, reverse driving, sudden stops, deviations beyond road
boundaries, and violent turning.

Definition 2.4. A reconstruction error ¢ is the error margin
derived from comparing the divergence between the generated
and original input trajectories using any generative model (such
as a diffusion model). The reconstruction loss used during training
captures the cumulative squared error across all trajectory points:

- 2
lon, lon,
lat, lat,

In Figure 1 (b) and (c), the reconstruction errors of 75 are 0.2
and 0.4, respectively. In addition, 73 is labeled as anomalous if its
reconstruction error is > A (i.e., 0.3), indicating notable deviations in

latitude, longitude, speed, or heading from neighboring trajectories
where A is defined as the reconstruction threshold.

T

LRec = Z

t=1

1

Definition 2.5. A diffusion probabilistic model (DPM) is a
generative framework that learns to reverse a noise-adding diffusion
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process, typically modeled with Gaussian perturbations, so that
samples drawn from the reverse Markov chain approximate the
actual data distribution.

Q(ﬁt\lzfl)
OO0
)
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Figure 3: Forward and reverse diffusion processes

Figure 3 presents a detailed view of a diffusion model, where
in the forward process, isotropic Gaussian noise is progressively
added to a signal through a predetermined Markov chain, denoted
by q(x;: | x¢-1), generating a series of intermediate noise vari-
ances referred as forward diffusion. Conversely, in reverse diffu-
sion, the process begins with a complete random noise, x7 ~
N (0, I). The model then incrementally refine through successive
iterations (X7-1,X7—2, ..., Xo) using learned transition distribu-
tions pg(x;-1 | X;), aiming for xo ~ p(x) and reconstructing the
signal from noise using a backward Markov chain.

Definition 2.6. A forward process progressively introduces (q)
Gaussian noise to xq over T iterations [32] as described by:

T
g 1 %0) = [ [ a0 1xe-1) 2)
t=1
q(x: | x¢-1) = N(x¢ | Var x4, (1 = a)T) , 3

Here, the hyper-parameters a;.7 are constrained between 0 and 1,
representing the noise variance introduced at each iteration. The
variable x;_; is scaled down by a factor of v/; to keep the variance
of the random variables finite. Additionally, deriving x; from x,
can be streamlined using Equation 4.:

q(xe [ %0) = N(x¢ | Ve xo, (1= a)I), 4)
where @ = [}, @;. In addition, one can derive the posterior distri-
bution of x,_; given (%, x;) as

q(xr_1 | X0, %) = N(x¢1 | g, 0*I)
_Na (1 -ay) ot Vo (1 - O_ft—l)x

H="oq ™ 1-a ®)

s (=—a-1)(1-a)
0f=——=.
1-a;

Definition 2.7. A reverse process (pg) is the reverse of a forward
diffusion process in that it begins with a completely noisy state,
x7 ~ N(0, I). The model then incrementally refines the trajectories
through successive iterations (Xr_1, XT—2, . . . , X ). In contrast to the
forward process g, pg goes in the reverse direction starting from
Gaussian noise xt:

T
poxor) = pGxn) [ | poCxealx), (©)
P(XT) = N(XT | 0> I)r (7)
po(xi1lxe) = N1 | po(Xes ), 021) ®)

where pg(Xo:7) is the joint probability distribution of (o, ..., Xr)
and p(xr) is a Gaussian distribution. The mean g (x;, t) accepts x;
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and t as input and is obtained by learning while the variance term
oI follows the inference process defined using isotropic Gaussian
distributions py(x;—1|x;), which are learned. If the noise variance
in the forward process steps is minimized, i.e., @;.7 ~ 1, the result-
ing optimal reverse process in Equation 8, pg(x;—1|x;) will closely
approximate a Gaussian distribution [68]. Moreover, it is necessary
for 1 — ar to be large enough to ensure that the distribution of xr
closely aligns with the prior distribution p(x7) = N (x7|0,I), which
is a standard Gaussian with mean zero and identity covariance ma-
trix. Here we designed fp to predict €, including x;. Consequently,
we can estimate x, by rearranging terms as shown in Equation 9:

1
X = —

= (Xt - V1-a fo(x, dt)) . )
Va,

Finally, we insert %, into the posterior distribution of q(x;—1|Xo, X;),
which parameterizes the mean of py(x;—1|x;) in Equation 10. We
set the variance of pg(x;-1|x;) to (1 — a;), which is the default
variance as determined by the variance of the forward process [33]:

1

Lo (X4, ay) = \/La_, (Xt - \/l_?oz_tfe(xt, 0?:)) . (10)

Additionally, we carry out refinement at each iteration as de-
scribed in Equation 11 (where €; ~ N(0,1)):
1 1-—oa;
Ve ("’ Vita
For consistency, we provide a summary of the mathematical sym-

bols employed in this paper. Table 1 consolidates the key notations
used in the proposed framework.

Xp-1 f@(xt,dt)) +Vi-ae.  (11)

Table 1: Summary of Mathematical Notations and Symbols

Notation Description

Pt Location sample at time ¢: (lon,, lat;, vs, i, ar, 8¢, Or)
lon;, lat, Longitude and latitude coordinates at time ¢

v, Op True / reconstructed speed (m s~ 1)

az, 4 True / reconstructed longitudinal acceleration (m s~2)
Y, Yt Heading (yaw) angle / reconstructed heading (rad)

o Steering (bearing/turning) angle in S-KBM (rad)

o Rate of turn (rad s ')

L Wheelbase or effective heading-base of the object (m)
K¢y Ky Curvature, k; = tan(8;) /L / reconstructed curvature
Ry Turning radius, R; = L/tan(5;)

£t Reconstruction error at time ¢

A Reconstruction-error threshold for anomaly detection
T A trajectory: ordered sequence of spatiotemporal states
z=[xy ¢]" Object state in S-KBM (position and heading)
u=1[06]" Control input in S-KBM (velocity and steering)

T Total number of diffusion steps (I'=1000 in our experiments)

q(x¢|x-1) Forward diffusion distribution (Gaussian)

po(X¢—11x;) Reverse denoising distribution parameterized by

a; Forward noise—scaling coefficient at step ¢

ar Cumulative product I—[f:1 a;

B Forward variance increment, f; =1 — a;

ot Variance in reverse step pg (X;—1 | X¢)

X0, X Original trajectory / reconstructed trajectory

€, € Standard Gaussian noise vector / noise sample at step ¢

fo Neural network predicting € or y1g in reverse process

hene Context-informed encoder embedding (spatiotemporal features)
E[[]-], Eq[-] | Expectation operator (unconditional / under distribution q)
Dk (pllq) Kullback-Leibler divergence between distributions p and q
Lvis Variational lower-bound loss

LRec Reconstruction loss (Eq. 1)

Lph Physics-based regularization loss (S-KBM constraints, Eq. 20)
LPTDPPM Total training loss: y1 Lvip + y2 Lphy

2.2 Problem Statement

Input:

— Trajectory Dataset: 71, 72, . . ., Tn

— Kinematic State: [lony, lat;, v, 8, ay, 6¢]7

- Reconstruction Threshold: A
Output: Anomalous Trajectories where ¢; > 4
Objective: Solution Quality
Constraints: Data Availability, Ground truth

Figure 1 (a) shows three trajectories 77, 7z, and 73, where trajec-
tory 7; exhibits significantly different mobility behavior compared
to 71 and 73 if only spatial deviation is considered. Hence, Figure
1 (b) shows 7; estimate higher reconstruction error ¢, and exceed-
ing reconstruction threshold A > 0.3. Figure 1 (c) considered both
spatial deviation and kinematic state Av V t € [t1, .., t,] resulting
in higher reconstruction error both exceeding A > 0.3.
Framework: The proposed framework builds on physics-informed

trajectory reconstruction to detect anomalous trajectories by lever-
aging both contextual and prior physical knowledge. The process
begins with trajectory GPS signals, which are used to generate
trajectories while computing the corresponding reconstruction er-
ror (¢;). A reconstruction threshold (1) is applied to these errors
to identify candidate anomalous trajectories where ¢; > A. These
candidates are then examined in conjunction with satellite aerial
imagery during an inspection by a human analyst. The analyst’s re-
view aids in forming a possible anomaly hypothesis, ensuring that
the final detection is both data-driven and contextually validated.
In this paper, we utilize a physics-informed diffusion probabilistic
model (Pi-DPM) as an encoder-decoder architecture to generate
the reconstruction error ¢, which is discussed in Section 3.

Problem Formulation
Contextual-based Prior Physical- Reconstruction Satelite Aerial
Information Knowledge Threshold A Images
Trajectory Physics-based Candidate Anomalous Inspection by Possibie
GPS Signals’ Reconstruction Error Trajectories (> 1) Human Analyst Hypzm:syis

Figure 4: Physics-informed Anomaly Detection Framework

3 Physics-informed Diffusion Model

Preserving inter-agent dependencies in multi-agent systems is cru-
cial for accurately modeling and detecting abnormal behaviors. To
this end, we introduce an encoder-decoder architecture with two
main components: a context-informed encoder to capture spatial-
temporal synchronous dependencies while generating embeddings,
and a physics-informed decoder to generate physically plausible
trajectories and sample for estimating reconstruction error.

3.1 Proposed Architecture

Our proposed model leverages the original denoising diffusion prob-
abilistic model (DDPM) [32] by considering local spatio-temporal
dependencies derived from neighboring trajectories, conditioning
the reverse process. The forward process gradually corrupts the re-
construction error of the input trajectory by adding Gaussian noise
until it converges to complete distortion at x7. In the reverse pro-
cess, the model de-noises x7 step-by-step to approximate the origi-
nal trajectory X,, where at each denoising step, physics-informed
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Figure 5: Physics-informed Diffusion Probabilistic Model (Pi-DPM) Architecture

decoder parameters are learned to enforce kinematic constraints,
while conditioning on surrounding trajectories to enhance spatio-
temporal contextuality. Figure 6 (b) shows an example of a typical
transition between states x; and x;_;. The forward transition fol-
lows g(x;|x;—1), while the reverse denoising step is modeled by
po(x;—1]|x;). At each timestep ¢, we concatenate the current noisy
trajectory x; with its spatially proximate neighbors and feed them
into an encoder-decoder architecture. The encoder leverages spatio-
temporal attention, and the decoder outputs a denoised trajectory
x;_1. Iterating this reverse process ultimately yields a reconstructed
trajectory. For training, we adopt a piecewise noise scheduling [31],
defined as p(@) = Y/ 2U(@—1, &)

3.2 Context-informed Encoder

To model contextual dependencies, Pi-DPM embeds object positions
and applies spatial-temporal attention [73]. Figure 6 shows how the
Contextual-Informed Encoder (CIE) captures spatial and temporal
dependencies via neighborhood information.

(a) Spatial Attention (b) Temporal Attention

Figure 6: Context-informed Encoder

(1) Spatial Attention: We use a sliding window at time ¢, where
the target object’s trajectory features form a query Q, and its neigh-
bors contribute keys K and values V. Attention weights, which are
computed via the softmax-scaled dot products of Q and K, highlight
the relevant neighbors. In Figure 6(a), object 7, attends to nearby
objects 71 and 73. The multi-head attention formulation is:

oikht\ I

Vi

where Qi, Kt] , and th are linear projections for object i and its
neighbors j at time .

v . (2

m=1

MH(Q!, K/, V/) = [Z softmax (

(2) Temporal Attention: After obtaining spatial information,
we apply a temporal convolution operation on temporal edges
in the spatio-temporal graph to capture dynamics over time. For
the temporal modeling, we consider each object independently and
employ a canonical transformer to extract the temporal dependen-
cies. Within the temporal attention mechanism, queries Q, keys K,
and values V represent the embeddings of all objects at a fixed time
step and pertaining to the distinct time steps of a specific object.
This design enables each object to leverage information from its
neighboring objects, thereby recovering valuable spatial insights.

Figure 6 (b) shows an example of temporal convolution at time
t, where Q; € t and K; and V; are assigned to neighborhood points
at time t — 1 and t + 1 respectively for the same trajectory 7;
which uses sliding windows (e.g., t — 1 to ¢ + 1) to model stepwise
dependencies. Here, we leverage co-linear attention where Q;, K;,
and V; are linear projections which are learned independently from
input embeddings for a given trajectory T;.
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based Regularization
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Positional Embedding

Encoder with Spatial and Temporal Attention

Physics-Informed Decoder
Figure 7: Proposed Encoder-Decoder Model

Figure 7 shows the components within the Context-Informed
Encoder, where the entire spatial-temporal attention mechanism is
performed in a multi-head attention module. The module is later
learned by a feedforward layer via multiple skip connections and
layer normalization, i.e., LayerNorm(x+Sublayer(x)), to ensure sta-
bility. The final learned representation is sent to a physics-informed
decoder, which utilizes a PINN architecture with a fully connected
layer (FC) and incorporates a simplified version of the kinematic
bicycle model as an integral part of a physics-informed regularizer.

3.3 Physics-informed Decoder

Data-driven generative models capture complex patterns but often
overlook physical constraints, thereby limiting their robustness
in noisy or unseen scenarios. The principle of physics-informed
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neural networks (PiNNs) is to train a neural network to learn from
observed data and satisfy underlying physical equations by min-
imizing a loss function, which is a weighted sum of the standard
reconstruction loss, the variational lower bound (VLB), and the
physics-based loss. The variational lower bound ensures the
model’s predictions align with observed trajectory data. In con-
trast, the physics-based loss enforces adherence to the underlying
kinematic constraints governing physical laws. Hence, this dual
objective complements data-driven approaches by incorporating
physical consistency into their predictions.

Kinematic Bicycle Model (KBM): This is a 3-degrees of freedom
(DoF) formulation of x and y coordinate, and heading angle § given
a constant velocity v, shown in Figure 8, where x and y represent
the coordinates of the rear wheel in the map, v denotes the velocity
of the model at the rear wheel, L is the wheelbase of the object, §
is the heading angle, and ¢ is the yaw angle of the object.

Figure 8: The kinematic bicycle model

However, due to dataset limitations, the physics-based information
and object dimensions were absent in current datasets, which are
required to calculate the complex kinematic state of the object or
agent (e.g., slip angle). To address this, we integrate a simplified-
version of the kinematic bicycle model that reduces the dual-axle
model to a single-axle, and compute physical parameters by con-
sidering consecutive kinematic states at a time.

Single-Axle Bicycle Model (S-KBM): At low speeds, KBM as-
sumes negligible slip, slope, and inertial effects. Wheels are lumped
into a single axis, and pitch, roll, and vertical dynamics are ignored,
with motion governed by curvature or steering inputs. In this work,
we employ a reduced form where the slip angle (between velocity
and heading) is set to zero, yielding a computationally efficient yet
physically grounded model [25, 57].

Velocity (v) ICR Legend
angentto. O rioner

the path y
® Rear Axle

(a) Kinematic Constraint (b) Rear Axle Bicycle Model

Figure 9: Simplified kinematic bicycle model (S-KBM)

Figure 9 (a) shows the simplified version of the kinematic-bicycle
model commonly used for normal (i.e., smooth, non-high speed)
mobility conditions. To ensure smooth and realistic predictions,

we regularize trajectory reconstruction [56], which is sufficient
for datasets without high-speed maneuvers. The S-KBM model’s
object state is defined by z = [x, y, /] 7, and its input is defined by
u = [v, 8], where (x, y) is the position, i is the heading, and v is the
velocity. Substituting x =ovcos(y), y =ovsin(y),andy =w
using the rear axle formulation depicted in Figure 9 (b), the model’s
state evolution is then governed by:

z=f(z,u) = [U cos(y) wosin(y) M%S]T, (13)

where ¢ is the heading angle (also ¥ = w), and w = v/R is the
rotation rate with turning radius R = L/tan(J). The substitution
thus yields iy = o - tan(8)/L. The rate of heading change ¥ is
driven by the curvature input k, defined at the front axle center.
The S-KBM maps control inputs to state derivatives using object-
specific parameters, such as wheelbase. However, since our real-
world dataset lacks such details (e.g., wheelbase, steering angle), we
use curvature k as the control input. This enables an object-agnostic
formulation of the motion model based on the state x = (x,y, ¢, v):

x v cos(¥)

dx _d |y| |usin(y)

i ok (14)
v a

3.4 Training and Inference

Variational Lower Bound: To effectively train the diffusion model,
we derive its training objective by minimizing the negative log-
likelihood of the model’s predicted probability distribution and the
true distribution of the data. We leverage Jensen’s inequality to
derive a variational lower bound to facilitate optimization:

L= —Eq(xor) log pg(xo)
Po(xo.1)
q(x1.1 | x0)
q(xlzT | xO)]
=Ey(x.) |log ————=
9(xor) [Og Po(xo.1)
= Lvi (15)

< —Eq(xor) log

This step reformulates the problem into minimizing the KL-
divergence between the two distributions. Further derivation re-
sults in a decomposition of the loss into entropy and multiple KL-
divergence terms:

T
~logpo(xr) + Y log XL

Lyvizg =E
v T £ py (it | x)

} (16)
This loss is further decomposed as:

Lyip = Eq [—log pg(xo | x1) + Dxw (q(xr | x0) || po(x1))

T
+ 3" Die (g | 20 0) Il poGers | x,»] (a7)
=2

To simplify this, we assume both q and py are Gaussian distribu-
tions and we leverage the denoising process of DDPM to train our
model. Hence, the KL divergence between them becomes:



Towards Physics-informed Diffusion for Anomaly Detection in Trajectories: A Summary of Results

+C (18)
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Once the diffusion model is trained, we can generate x;_; from x;
according to Equation 19, iteratively, until the original sample xq is
reconstructed. Then, anomaly detection is performed by comparing
xo with the reconstructed trajectory X,. From the reparameteriza-
tion trick and Equation 18, the sampling process to obtain x;_; is
given by:

~ xp — V1 — areg(xy, t) _
Xp-1 = V-1 — +aJ1 = @1 — 0Z-€g(xy, 1) +OrEr,

az
(19)
where ¢, ~ N(0,1) and ¢y is the trained neural network. To control
the stochasticity of the sampling, we introduce a hyperparameter n
and define o,(1)? = 5 - f;, where n € R*.

Physics-based Regularization: To guide learning with phys-
ical plausibility, we incorporate the simplified-kinematic bicycle
model (S-KBM) as a prior within the diffusion framework. The over-
all loss combines the variational lower bound and a physics loss
that penalizes deviations from S-KBM dynamics, including high
acceleration and sharp curvature, promoting smooth and realistic
trajectories.

A 2 ~ 2

X . A djg , . «
Lppy = wi Z—vcost// + Wy E—vsmlﬁ
+ ﬁ— + @—” ’ (20)
W3 di UK Wy di a

As shown in Equation 20, the physics loss captures violations
of S-KBM differential constraints. It acts as a regularizer against
physically implausible motion, enforcing low-level kinematic con-
straints that reflect geometric and control limitations. The overall
training objective combines variational and physics-based losses:

LM =y Lvig + y2 Lpny (21)

4 Experiment Evaluation

We conducted experiments on real-world data to compare Pi-DPM
with state-of-the-art trajectory reconstruction and anomaly de-
tection methods. Ablation studies were also included as well as a
sensitivity analysis on the reconstruction threshold A. Figure 10
summarizes the overall design. The experiments addressed four
research questions (RQs) as follows:

e RQ1: How does the proposed method with/without KBM
and CIE compare with SOTA anomaly detection methods?

e RQ2: How does the proposed method with/without KBM
and CIE compare with trajectory reconstruction methods?

e RQ3: How sensitive are the proposed methods to changes
in A threshold as compare with anomaly detection methods?

e RQ4: How generalizable are the proposed methods as we
change the mobility datasets?

GeoAnomalies "25, November 3-6, 2025, Minneapolis, MN, USA

4.1 Experimental Design

Dataset: We evaluated our Pi-DPM data model on three real-world
datasets spanning diverse spatial and temporal domains, namely:
(1) Geolife [90], (2) MarineCadastre [6], and (3) Danish Maritime
Authority [3]. These datasets vary significantly in scale and ge-
ographic coverage. For example, MarineCadastre includes over
1.1 million maritime trajectories within a global bounding box
[—180°,180°], [-90°,90°], while the Danish Maritime dataset con-
tains 132,135 coastal vessel trajectories within a bounded region
around Denmark. In contrast, the Geolife dataset offers 17,621 ur-
ban object trajectories collected within a narrow spatial range in
Beijing [116.25°,116.55°], [39.75°,40.05°]. The datasets also differ
in trajectory granularity, with average durations ranging from 32.76
minutes (Geolife) to 394.4 minutes (MarineCadastre), and average
distances spanning from 5.91 km to over 559 km.

Data Methods Metrics
Real World Data Bassline Methods Solution Quality 1:
Geolife GM-VSAE, DeepTEA, Anomaly Detection

MarineCadastre
Danish Marine Authority

ATROM, MSD-OA
CausalTAD, LM-TAD

Accuracy, Precision,
Recall, F1-measure

Synthetic Data ‘ Proposed Method ‘ Solution Quality 2:
Noise Addition in Pi-DPM Trajectory Reconstruction

Real World Datasets wiwo KBM and CIE RMSE, MAE, MAPE

Figure 10: Experiment Design

Synthetic Data Generation: Due to the scarcity of annotated
anomalous trajectory data across all three datasets, we injected
context-aware anomalies derived from first and second-order kine-
matic measures, including abrupt speed changes, bearing discon-
tinuities, acceleration spikes, and high-jerk events. These pertur-
bations emulate realistic irregularities such as unauthorized turns,
erratic motion, and violations of navigational norms in both Geolife
and the maritime datasets. The procedure is fully reproducible, with
all thresholds, window sizes, and random seeds explicitly specified.
The detailed methods for generating the synthetic anomalies we
used for ground-truth verification are provided below.

(1) Geolife: First, we extracted sub-trajectory sequences from
raw GPS trajectories using a fixed-seed deterministic pipeline. Data
were de-duplicated, temporally ordered, and split if inter-point
gaps exceeded 10 seconds. Segments lower or greater than 100
points or 120 seconds were discarded, respectively. For each seg-
ment, great-circle distance, speed, acceleration, jerk, and heading
were computed, with speed/heading median-filtered for a fixed size
window W=5. Segments were retained if median speed > 6,m/s,
95th—percentile speed < 45,m/s, median |acceleration| < 3,m/s?,
and median turn rate < 15°/s. Consecutive segments were stitched
together if within 60,s, 50,m, and 20°. Anomalies were injected
into p € 5%, 10%, 20% of subsequences via temporal compression
(a € [0.5,0.9]), bearing jumps (90°-150°), or lateral drift (30-120,m),
with parameters resampled if bounds were violated.

(2) MarineCadastre and Danish Maritime Authority (DMA):
We removed duplicate time-stamps, sorted chronologically, and
discarded segments less than 50 points or greater than 60s. Kine-
matic states (i.e., acceleration, jerk, and turning rate) were derived
from travel time and distance between two consecutive points
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Table 2: Pi-DPM with kinematic constraints detects anomalous trajectories more accurately than baselines (5% anomalies)

Geolife MarineCadastre Danish Maritime Authority

Methods

Acc. (T) Prec.(T) Rec.(T) F1(7) ‘ Acc. (T) Prec.(T) Rec.(T) F1(7) ‘ Acc. (T) Prec.(T) Rec.(T) F1(7)
iBAT [85] 0.620 0.600 0.620 0.610 0.610 0.590 0.610 0.600 0.620 0.600 0.620 0.610
iBOAT [9] 0.670 0.650 0.670 0.660 0.660 0.640 0.660 0.650 0.670 0.650 0.670 0.660
GM-VSAE [48] 0.720 0.700 0.720 0.710 0.710 0.690 0.710 0.700 0.720 0.700 0.720 0.710
DeepTEA [28] 0.770 0.750 0.770 0.760 0.760 0.740 0.760 0.750 0.770 0.750 0.770 0.760
ATROM [22] 0.820 0.800 0.820 0.810 0.810 0.790 0.810 0.800 0.820 0.800 0.820 0.810
CausalTAD [43] 0.870 0.850 0.870 0.860 0.860 0.840 0.860 0.850 0.870 0.850 0.870 0.860
MSD-OATD [74] 0.900 0.880 0.900 0.890 0.890 0.870 0.890 0.880 0.900 0.880 0.900 0.890
LM-TAD [52] 0.920 0.900 0.920 0.910 0.910 0.890 0.910 0.900 0.920 0.900 0.920 0.910
Pi-DPM w/o KBM (Ours) 0.940 0.930 0.940 0.940 0.930 0.920 0.930 0.930 0.940 0.930 0.940 0.940
Pi-DPM w/o CIE (Ours) 0.960 0.950 0.960 0.960 0.950 0.940 0.950 0.950 0.960 0.950 0.960 0.960
Pi-DPM (Ours) 0.980 0.970 0.990 0.980 0.970 0.960 0.980 0.970 0.980 0.970 0.990 0.980

Bold marks statistically best results (p < 0.05) over the best baseline. T: higher is better. Values are means.

in a shipping lane using a median-filtered window size of 5. Us-
ing NOAA’s Electronic Nautical Charts (ENC’s) and Automatic
Identification Systems (AIS) density maps to delineate shipping
lanes, harbor approaches, and waypoints, we computed empiri-
cal speed over ground (SOG), turning rate, and lane-adherence
profiles and then injected 5%, 10%, 20% anomalies via speed profile
and turning-rate manipulation from ranges [5.0,9.0] knots degree
within a bearing € [20°,60°] points. Course deviation (30-200 m
with lateral drift over bearing € [60°,180°], outside NOAA ship-
ping lanes, extracted from ENCs). We also included scenarios with
waypoints skipping or unscheduled turns (90°-150° jump over
bearing € [10,30] points, cosine-tapered). For post-perturbation,
kinematics were recomputed and anomalies violating IMO bounds
were resampled, yielding reproducible, physically plausible mar-
itime anomalies.

Task 1: Anomaly Detection: We first compared Pi-DPM against
two traditional methods, iBAT [85] and iBOAT [9], which leverage
the concept of degree of isolation to identify trajectories with anom-
alies. We also tested ML-based methods: GM-VSAE [48] employs a
Gaussian mixture model to represent trajectory features in latent
space. In contrast, ATROM [22] identifies a specific type of anomaly
a trajectory exhibits. Other methods: DeepTEA [28] and CausalTAD
[43], integrate mobility patterns with time-dependent trajectory
patterns, while MSD-OATD [74] and LM-TAD [52] incorporate
spatiotemporal dependencies to a certain extent.

Task 2: Trajectory Reconstruction: As Pi-DPM operates as a
generative model followed by threshold-driven anomaly detection,
its performance hinges on accurately representing what defines
normal trajectories. Hence, we evaluated Pi-DPM against six gen-
erative models: VAE [80], TrajGAN [47], and DP-TrajGAN [87],
Diff Wave [37], Diff Traj [91], and ControlTraj [92]. More detailed
descriptions for all baseline methods are in Appendix A and B.

Experimental Setup: We implemented the Pi-DPM framework
using PyTorch 2.4 and Python 3.12 and executed all experiments
on a single NVIDIA A100 40GB GPU. The test set was generated
by selecting 20% of the training data, and the remaining 80% of
the trips were split randomly into 60% training and 20% validation
subsets over ten trials. We used a fixed number of diffusion steps
T = 1000, consistent with prior work [31, 68, 69], and adopted a

linear noise schedule with 8; = 107 to fr = 0.02, ensuring a low
signal-to-noise ratio at xr while preserving alignment between the
forward and reverse processes. Our implementation is available
in the official GitHub repository' and hyperparameter ranges are
reported in Table 3.

Table 3: Hyperparameter Settings for Pi-DPM

Hyperparameter Setting Value Reference Range
Diffusion Steps 1000 200 ~ 500
Skip Steps 4 1~38
Guidance Scale 2.5 0.5~8
S (linear) 0.0002 ~ 0.04 -
Batch Size 512 > 128
Sampling Blocks 3 22
ResNet Blocks 3 =2
Input Length 180 100 ~ 200

Evaluation Metrics: To comprehensively assess the perfor-
mance of learning-based methods for anomaly detection, we evalu-
ated their effectiveness using a suite of standard metrics: accuracy,
precision, recall, and F-measure. These metrics offer a comprehen-
sive view of model performance, encompassing both the accuracy
of predictions and the balance between false positives and false neg-
atives. We further compared these methods with a trajectory recon-
struction approach, where the primary objective was to synthesize
trajectories that closely resemble real-world movement patterns. To
quantify error estimation, we adopted established methodologies
[15, 91], namely root mean square error (RMSE), mean absolute
error (MAE), and mean average precision error (MAPE), for both
comparison and ablation studies (more details in Appendix C).

Ablation Study: To assess the contribution of Pi-DPM’s com-
ponents, we compared baseline models, the full Pi-DPM, and two
variants: (i) Pi-DPM w/o CIE, which removed the spatiotemporal
encoder but retained the KBM regularizer, and (ii) Pi-DPM w/o
KBM, which excluded the bicycle model while using spatiotem-
poral dependencies. The comparative results were integrated and
shown with other baseline methods in Table 4, Table 5, and Table 6.

!https://github.com/arunshar/Physics-Informed-Diffusion-Probabilistic-Model.git
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Table 4: Pi-DPM generates trajectories with the lowest error rate.

Geolife [90]

MarineCadastre [6]

Danish Maritime Authority [3]

Methods

RMSE ({) MAE (|) MAPE () | RMSE (|) MAE ()  MAPE(]) | RMSE(|) MAE (])  MAPE (|)
VAE [80] 247.18(3.25)  333.30(4.10)  74.3(0.85) | 313.51(3.12)  309.14(3.45)  77.2(0.92) | 239.26(2.90)  342.34(3.78)  73.7(0.81)
TrajGAN [58] 216.44(2.98)  336.23(3.84) 69.8(0.79) | 251.25(2.75)  269.85(3.21)  72.7(0.84) | 213.76(2.66)  345.63(3.69)  71.3(0.80)
DP-TrajGAN [87] 208.02(2.85)  284.26(3.42)  66.2(0.75) | 258.69(2.89)  232.87(3.05)  68.2(0.78) | 207.12(2.73)  283.68(3.28)  66.9(0.76)
GM-VSAE [48] 290.12(3.55)  330.45(4.05) 74.1(0.85) | 310.32(3.42)  30556(3.82)  76.9(0.90) | 25548(3.11)  34021(3.97)  74.0(0.83)
DeepTEA [28] 275.34(3.40)  325.12(3.95)  73.0(0.84) | 305.78(3.31)  300.43(3.76)  75.8(0.88) | 250.23(3.05)  335.10(3.88)  73.2(0.82)
ATROM [22] 260.25(3.26)  320.03(3.84)  72.0(0.82) | 300.12(3.18)  29534(3.65)  74.7(0.86) | 24536(2.96)  330.22(3.78)  72.1(0.81)
CausalTAD [43] 245.18(3.10)  310.78(3.70)  71.0(0.81) | 290.44(3.05)  285.67(3.54)  73.6(0.85) | 240.15(2.85)  325.01(3.65)  71.2(0.80)
MSD-OATD [74] 235.40(2.95)  305.50(3.62)  70.0(0.80) | 285.23(2.92)  280.34(3.49) 72.5(0.84) | 235.02(2.78)  320.34(3.59)  70.5(0.79)
LM-TAD [52] 225.67(2.88)  300.12(3.54)  69.0(0.79) | 280.45(2.87)  275.78(3.45)  71.5(0.83) | 230.14(2.70)  315.23(3.51)  69.7(0.78)
Diffwave [37] 250.68(3.20)  333.53(3.99)  74.7(0.86) | 313.79(3.15)  309.60(3.72)  77.9(0.91) | 261.56(3.00)  343.46(3.89)  75.3(0.84)
Diff Traj [91] 225.34(2.86)  345.13(4.08)  72.3(0.82) | 252.73(2.80)  272.38(3.38)  73.1(0.85) | 215.21(2.65)  364.66(4.15)  71.7(0.81)
ControlTraj [92] 211.50(2.78)  284.85(3.42)  69.1(0.80) | 261.87(2.75)  235.45(3.20) 68.5(0.79) | 208.53(2.62)  298.60(3.35)  69.3(0.80)
Pi-DPM w/o KBM (Ours)  195.00(2.50)  205.00(3.00)  66.0(0.77) | 240.00(2.60)  233.00(3.05)  71.0(0.79) | 212.00(2.40)  255.00(3.10)  62.0(0.75)
Pi-DPM w/o CIE (Ours)  165.00(2.10)  180.00(2.80)  63.5(0.74) | 230.00(2.50)  231.00(2.95)  60.0(0.72) | 190.00(2.20)  230.00(2.85)  60.5(0.73)
Pi-DPM (Ours) 143.33(1.95) 160.70(2.65) 61.3(0.71) | 224.15(2.30) 229.51(2.80) 57.0(0.70) | 179.54(2.05) 216.29(2.70) 59.7(0.72)

Bold marks statistically best results (p < 0.05) over the best baseline. |: lower is better. Values are mean (standard deviation).

4.2 RQ1: Anomaly Detection

We assessed anomaly detection performance using accuracy, preci-
sion, recall, and F1-score, comparing Pi-DPM to baselines iBAT [85],
iBOAT [9], GM-VSAE [48], DeepTEA [28], ATROM [22], CausalTAD
[43], MSD-OATD [74], and LM-TAD [52]. As shown in Table 2,
Pi-DPM with the kinematic bicycle model (KBM) consistently out-
performs all baselines. On Geolife, it achieves 0.980 accuracy and
0.980 F1, surpassing CausalTAD at 0.860 F1 and LM-TAD at 0.910
F1, with similar gains on MarineCadastre (0.970 accuracy, 0.970
F1) and Danish Maritime Authority (0.980 accuracy, 0.990 recall).
Among its variants, Pi-DPM w/o KBM yields the lowest perfor-
mance (e.g., 0.940 F1 on Geolife), followed by Pi-DPM w/o CIE
(0.960 F1 on Geolife), while full Pi-DPM demonstrates consistent
superiority, confirming the utility of contextual knowledge and
incorporating physics-informed motion constraints. These results,
based on 5% injected anomalies and additional results for 10% and
20% anomalies, show similar trends, with Pi-DPM retaining the
highest performance across all datasets. Due to space constraints,
the results for 10% and 20% are shown in Tables 5 and 6 respectively.

4.3 RQ2: Trajectory Reconstruction

Since Pi-DPM applies a generative model and then detects anom-
alies using thresholds, its effectiveness depends on precisely model-
ing normal trajectory patterns. High-fidelity reconstruction ensures
that deviations can be reliably identified as anomalies. As shown
in Table 4, the full Pi-DPM achieves the lowest error rates across
Geolife, Marine-Cadastre, and DMA, demonstrating the value of
embedding physics-informed priors in a diffusion backbone. On
Geolife, RMSE drops from 247.180 (VAE) to 143.330, with similar
gains on the other datasets. Traditional baselines (VAE, TrajGAN,
DP-TrajGAN) emphasize spatial patterns but model temporal corre-
lations only weakly, yielding the highest MAPE (> 66%). Diffusion
baselines (Diff Wave, Diff Traj, ControlTraj) better capture stochas-
tic dynamics yet remain motion-agnostic. Ablations confirm that
both KBM and CIE are essential across all three datasets.

4.4 ROQ3: Sensitivity Analysis

We assessed the effect of the reconstruction error threshold A on
model performance by varying A from 0.2 to 1.0, and comparing
Pi-DPM with MSD-OATD, CausalTAD, and LM-TAD. Figure 11
shows that all models improve with increasing lambda, but Pi-DPM
consistently outperforms others across all metrics. Notably, Pi-
DPM'’s accuracy and F1-score rise sharply to 0.99 and 0.98 at A = 1.0,
while MSD-OATD, CausalTAD, and LM-TAD reach only 0.67, 0.76,
and 0.85 in accuracy, and 0.63, 0.72, and 0.81 in F1-score, respectively.
Pi-DPM also excels in precision and recall, achieving scores of
0.98 and 0.99. This underscores Pi-DPM’s robustness and anomaly
detection capabilities, utilizing reconstruction-based criteria.
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4.5 RQ4: Transfer Learning

To evaluate both within and cross-domain generalizability, we pre-
trained Pi-DPM on one maritime region and then continued the
training in another region using 5%-100% of domain data, compar-
ing the results of Pi-DPM with only training on different percent-
ages of data. As shown in Figure 12, Origin indicates that transfer
learning is not applicable, while Transfer indicates applying trans-
fer learning. Notably, even with just 5% of the data, the transfer
learning model achieves a significantly lower error compared to the
original one. As the percentage of data increases, the gap between
the two models narrows. The results show that the PIDPM model
exhibits strong adaptability and generalization capabilities when ap-
plied to different maritime domains. Beyond maritime-to-maritime
transfer (within the domain), we further examined adaptation from
MarineCadastre to both Geolife and DMA datasets (cross-domain)
as shown in Figure 13. Despite the significant differences between
urban mobility and maritime trajectories, the transfer setting shows
only marginal loss relative to training from scratch, confirming that
Pi-DPM captures transferable trajectory structures across heteroge-
neous domains. This robustness enables rapid adaptation in diverse
applications such as maritime surveillance and urban planning.
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Figure 12: Transfer Learning within Maritime Domain
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5 Related Work

Trajectory anomaly detection literature [14, 55, 89] often relies
on microscopic traffic simulators [20, 38, 70] and their city-scale
extensions [44, 86], which embed car-following and lane-change
heuristics [4] but struggle with the stochasticity of real mobility[23].
Similarity-based methods (e.g., edit distance, LCS, DTW, sliding
windows) [5, 10, 11, 45, 82] have shown early promise. In contrast,
simulation-based generators [67] and noise perturbations [84] still
rely on historical assumptions that miss fine-scale spatiotemporal
dependencies [40, 53, 81]. Grid-based approaches [9, 85] further
simplify spatial interactions [17-19]. Generative models that con-
sider spatiotemporal dependencies [22, 28, 43, 48, 74] often treat
entire trips as independent, overlooking cross-route or asynchro-
nous behaviors and remain limited in capturing complex mobility
patterns [39, 59-66, 72, 72], including anomaly detection.

Deep generative models have introduced a new paradigm for
trajectory synthesis, which can be classified into discrete and con-
tinuous methods. Discrete models generate coarse-grained outputs
such as grid-cell sequences [21, 42, 49], pixel-based maps [7, 46],
road segments [12, 35, 77], or POI transitions [13, 75, 78], favor-
ing computational efficiency at the expense of spatial and tempo-
ral resolution. In contrast, continuous models offer finer fidelity,
aligning more closely with raw GPS traces. In addition, VAEs and
GANSs have enabled modeling of complex trajectory distributions
[29, 58, 80]. However, these models often convert trajectories into
low-resolution representations such as grids [21, 54, 83] or im-
ages [27, 76], which degrade spatial-temporal accuracy [50]. While
effective for group-level simulation, they fall short in reconstruct-
ing fine-grained, individual trajectories. Diffusion-based models
[24, 32, 91] have recently emerged as a compelling alternative, offer-
ing continuous and high-fidelity reconstruction capabilities suitable
for anomaly detection. However, purely data-driven methods often
exhibit limitations in scientific domains due to their reliance on
large-scale labeled data and inability to honor physical laws, result-
ing in implausible outputs in fields like climate science and biology
[1, 16, 79]. Our proposed method addresses these gaps by embed-
ding kinematic constraints from the bicycle model [56], ensuring
that generated trajectories are not only statistically coherent but
also physically feasible.

6 Conclusion and Future Work

We propose a Physics-Informed Diffusion Probabilistic Model (Pi-
DPM) to capture GPS Spoofing behavior in maritime and urban
domains, utilizing both contextual and physical parameters. To en-
hance reconstruction error estimation, we integrate synchronous
nearby trajectory behavior in the encoder and the kinematic bicy-
cle model [56] at the decoder stage, thereby leveraging physical
parameters. Experimental results demonstrate that Pi-DPM out-
performs state-of-the-art methods on both anomaly detection and
trajectory reconstruction tasks. Additionally, the proposed model
is more generalizable across various application domains.

Future Work: We plan to extend Pi-DPM with additional phys-
ical parameters (e.g., slip angle, jerk) and more sophisticated kine-
matic models, such as a 4-wheel formulation [26, 57] of KBM, for
improved maneuvering accuracy. We can also evaluate Pi-DPM on
richer modalities (e.g., on-board diagnostics) and integrate multi-
modal auxiliary datasets via contrastive learning [8, 41] to enhance
robustness. Another direction is to optimize the computational effi-
ciency for real-time deployment in safety-critical domains. In the
long term, we envision physics-informed foundation models [51] to
generalize and support a diverse range of anomaly detection tasks.
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iBAT: Trajectories are first embedded in a spatio-temporal feature
space (speed, heading change, stop duration, etc.), and random
hyper-planes recursively split the space. Rare paths are isolated
after only a few splits, so a short isolation depth directly yields a
high anomaly score. [85].

iBOAT: iBOAT slides a fixed-length window along each route
and, for every window, counts its k nearest neighbours in a large
corpus of normal traffic. Windows with little neighbor support are
deemed isolated and given high anomaly scores; the voyage’s final
score is the maximum window score, so even a brief deviation is
enough to flag the whole track [9].

GM-VSAE: The Gaussian-Mixture Variational Sequence AutoEn-
coder learns rich spatio-temporal dependencies along a route, then
clusters the resulting embeddings with a Gaussian-mixture prior
to map each major “normal” route type into its own region of a
continuous latent space. New trajectories are quickly projected
into this space; those that cannot be well reconstructed or that fall
outside the high-density mixture are flagged as anomalies [48].

DeepTA: DeepTA is a deep-probabilistic, time-aware anomaly
detector that learns the evolving distribution of vehicle states, al-
lowing it to flag outliers even under highly complex traffic patterns.
To enable live monitoring, a lightweight, approximate version of
the model trades a small amount of accuracy for the speed needed
to surface abnormal behavior in real-time [28].

ATROM: The Anomaly Typology Recognition and Organiza-
tion Model (ATROM) introduces a structured typology to classify
anomalies across five dimensions: structure, distribution, context,
semantics, and temporal patterns. This domain-independent frame-
work improves interpretability, consistency, and adaptability across
diverse spatiotemporal anomaly detection scenarios [22].

Causal TAD: CausalTAD integrates spatial clustering with tem-
poral prediction for trajectory anomaly detection. It uses DBSCAN
to form baseline clusters of normal behavior and trains a ProbSparse
Transformer to model recent motion sequences. Discrepancies be-
tween predicted and clustered behavior—measured via dynamic
time warping (DTW)—are used to flag anomalies. The method em-
phasizes causality and time-aware interpretation of deviation [43].

MSD-OATD: MST-OATD is a multi-scale system for real-time
trajectory anomaly detection, capturing movement patterns at sev-
eral spatial and temporal granularities. An integrated ranking mech-
anism continually refreshes its reference set with incoming data,
allowing the model to adapt to shifting traffic behaviors while pre-
serving detection accuracy [74].

LM-TAD: LM-TAD reinterprets a trajectory as a language-like
token sequence and trains an autoregressive, causal-attention model
to learn its joint probability distribution. User-specific tokens per-
sonalize the context, so points with low likelihood (high perplexity)
are flagged as anomalies; this yields state-of-the-art results on the
PoL dataset and competitive performance on the Porto taxi dataset,
while supporting GPS, stay-poistrike a balance between activity
tokens. An efficient key-value cache lets the model operate online
without repeatedly recomputing attention, keeping latency low
[52].
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B Baseline Trajectory Reconstruction Methods

Variational Autoencoder (VAE): The VAE encodes trajectories
into a lower-dimensional latent space using two convolutional lay-
ers followed by a fully connected layer. This compact representation
captures key spatiotemporal features. A symmetric decoder recon-
structs the trajectory using a fully connected layer followed by
two deconvolutional layers. The model is trained by minimizing a
combination of reconstruction loss and KL divergence, encouraging
the latent space to follow a Gaussian prior [80].

Trajectory GAN (TrajGAN): TrajGAN synthesizes plausible
trajectory data by training a generator—discriminator pair. The gen-
erator takes as input a noise vector concatenated with trajectory
seeds, passing it through two fully connected layers followed by
two convolutional layers to output synthetic trajectories. The dis-
criminator evaluates the authenticity of the generated sequences via
convolutional and dense layers. The adversarial training optimizes
both networks to balance fidelity and diversity [58].

DP-TrajGAN: The DP-TrajGAN model addresses privacy-preserving

trajectory synthesis by integrating an enhanced LSTM-based GAN
with formal differential privacy (DP) mechanisms. The generator
captures trajectory dynamics while preserving privacy by inject-
ing calibrated noise into the training process. To optimize the pri-
vacy-utility trade-off, a Partially Observable Markov Decision Pro-
cess (POMDP) is employed to allocate the privacy budget across
training iterations adaptively. This results in synthetic trajecto-
ries that maintain statistical similarity to real-world patterns while
safeguarding sensitive location information [87].

Diffwave: Originally designed for speech synthesis, Diffwave is
a generative model based on the WaveNet architecture. It comprises
16 residual layers employing bidirectional dilated convolutions and
skip connections to propagate contextual information across time
steps. The output is transformed via tanh and sigmoid activations
into a 1D convolutional decoder. Its autoregressive structure en-
ables it to model long-range dependencies, making it suitable for
sequential data reconstruction tasks [37].

Diff Traj: Diff Traj leverages diffusion processes to progressively
refine noise into structured trajectories. Unlike GANSs, it does not
rely on adversarial training. The model incorporates conditioning
via learned embeddings of start and end locations, thereby improv-
ing semantic coherence with respect to origin—destination con-
straints. This conditioning facilitates location-aware reconstruction
without enforcing explicit topological priors [91].

ControlTraj: ControlTraj introduces a topology-constrained
diffusion model for high-fidelity and geography-aware trajectory
reconstruction. It incorporates a novel road segment autoencoder to
learn fine-grained embeddings of underlying street networks. These
embeddings, combined with trip-level attributes, guide a modified
geographic denoising UNet architecture (GeoUNet), enabling the
reconstruction of plausible trajectories conditioned on structural
constraints. ControlTraj demonstrates adaptability across diverse
spatial contexts and preserves geographical realism [92].

C Evaluation Metrics

Mean Squared Error (MSE): The MSE quantifies the average
squared discrepancy between predicted values, §;, and observed
values, y;, for a dataset of size n. By squaring the errors, MSE
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Table 5: Pi-DPM with kinematic constraints detects anomalous trajectories more accurately than baselines (10% anomalies)

Geolife MarineCadastre Danish Maritime Authority

Methods

Acc. (T) Prec.(T) Rec.(T) F1(7) ‘ Acc. (T) Prec.(T) Rec.(T) F1(7) ‘ Acc.(T) Prec.(T) Rec. () F1(])
iBAT [85] 0.600 0.580 0.600 0.590 0.590 0.570 0.590 0.580 0.600 0.580 0.600 0.590
iBOAT [9] 0.650 0.630 0.650 0.640 0.640 0.620 0.640 0.630 0.650 0.630 0.650 0.640
GM-VSAE [48] 0.700 0.680 0.700 0.690 0.690 0.670 0.690 0.680 0.700 0.680 0.700 0.690
DeepTEA [28] 0.750 0.730 0.750 0.740 0.740 0.720 0.740 0.730 0.750 0.730 0.750 0.740
ATROM [22] 0.800 0.780 0.800 0.790 0.790 0.770 0.790 0.780 0.800 0.780 0.800 0.790
CausalTAD [43] 0.850 0.830 0.850 0.840 0.840 0.820 0.840 0.830 0.850 0.830 0.850 0.840
MSD-OATD [74] 0.880 0.860 0.880 0.870 0.870 0.850 0.870 0.860 0.880 0.860 0.880 0.870
LM-TAD [52] 0.900 0.880 0.900 0.890 0.890 0.870 0.890 0.880 0.900 0.880 0.900 0.890
Pi-DPM w/o KBM (Ours) 0.920 0.910 0.920 0.920 0.910 0.900 0.910 0.910 0.920 0.910 0.920 0.920
Pi-DPM w/o CIE (Ours) 0.940 0.930 0.940 0.940 0.930 0.920 0.930 0.930 0.940 0.930 0.940 0.940
Pi-DPM (Ours) 0.960 0.950 0.970 0.960 0.950 0.940 0.960 0.950 0.960 0.950 0.970 0.960

Bold marks statistically best results (p < 0.05) over the best baseline. T: higher is better. Values are means.

Table 6: Pi-DPM with kinematic constraints detects anomalous trajectories more accurately than baselines (20% anomalies)

Geolife MarineCadastre Danish Maritime Authority

Methods

Acc. (T) Prec.(T) Rec.(T) F1(7) ‘ Acc.(T) Prec.(T) Rec.(T) F1(7) ‘ Acc.(T) Prec.(T) Rec.(T) F1(7)
iBAT [85] 0.580 0.560 0.580 0.570 0.570 0.550 0.570 0.560 0.580 0.560 0.580 0.570
iBOAT [9] 0.630 0.610 0.630 0.620 0.620 0.600 0.620 0.610 0.630 0.610 0.630 0.620
GM-VSAE [48] 0.680 0.660 0.680 0.670 0.670 0.650 0.670 0.660 0.680 0.660 0.680 0.670
DeepTEA [28] 0.730 0.710 0.730 0.720 0.720 0.700 0.720 0.710 0.730 0.710 0.730 0.720
ATROM [22] 0.780 0.760 0.780 0.770 0.770 0.750 0.770 0.760 0.780 0.760 0.780 0.770
CausalTAD [43] 0.830 0.810 0.830 0.820 0.820 0.800 0.820 0.810 0.830 0.810 0.830 0.820
MSD-OATD [74] 0.860 0.840 0.860 0.850 0.850 0.830 0.850 0.840 0.860 0.840 0.860 0.850
LM-TAD [52] 0.880 0.860 0.880 0.870 0.870 0.850 0.870 0.860 0.880 0.860 0.880 0.870
Pi-DPM w/0 KBM (Ours) 0.900 0.890 0.900 0.900 0.890 0.880 0.890 0.890 0.900 0.890 0.900 0.900
Pi-DPM w/o CIE (Ours) 0.920 0.910 0.920 0.920 0.910 0.900 0.910 0.910 0.920 0.910 0.920 0.920
Pi-DPM (Ours) 0.940 0.930 0.950 0.940 0.930 0.920 0.940 0.930 0.940 0.930 0.950 0.940

Bold marks statistically best results (p < 0.05) over the best baseline. T: higher is better. Values are means.

emphasizes larger deviations, making it particularly sensitive to
outliers. A lower MSE indicates higher prediction accuracy.

n
MSE =~ (- )°. (22)
=
Root Mean Squared Error (RMSE): The RMSE is the square
root of the MSE, providing an error measure in the same units as
the original data. RMSE facilitates intuitive interpretation of error
magnitude while retaining sensitivity to significant deviations.

RMSE = (23)

Mean Absolute Error (MAE): The MAE computes the average
absolute difference between predicted and observed values. Unlike
MSE, MAE assigns equal weight to all errors, offering robustness
against outliers and a straightforward measure of average error.

1 .
MAE = ;Z|yi_yi|- (29)
=

Mean Absolute Percentage Error (MAPE): The MAPE ex-
presses the error as a percentage of the observed values, enabling
scale-independent comparisons. MAPE is valuable for cross-dataset
comparisons but may become unstable when y; approaches zero.

yi — i

Yi
Binary classification: Predictions are evaluated against ground-
truth labels (TP, TN, FP, FN) using standard metrics:

1 n
MAPE = — X 100. 25
5) =

i=1

TP + TN
Accuracy (ACC) = ————— (26)
TP + TN + FP + FN
TP
Precision (P) = ——, (27)
TP + FP
TP
Recall R) = ————, (28)
TP + FN
2PR
F1- F1) = ——. 29
score (F1) PiR (29)
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